[1] |
TANG J, WANG X C, HU Y, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2019, 271: 125-135. doi: 10.1016/j.biortech.2018.09.087
|
[2] |
王佳, 荣宏伟, 肖冠勋, 等. 深圳某水质净化厂A/A/O 微曝氧化沟深度脱氮除磷工艺效果分析[J]. 环境工程学报, 2020, 14(10): 2837-2842. doi: 10.12030/j.cjee.201911183
|
[3] |
CAO G. , WANG S, PENG Y, et al. Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater[J]. Bioresource Technology, 2013, 128: 604-611. doi: 10.1016/j.biortech.2012.09.078
|
[4] |
ZHU Z, CHEN W, TAO T, et al. A novel AAO-SBSPR process based on phosphorus mass balance for nutrient removal and phosphorus recovery from municipal wastewater[J]. Water Research, 2018, 144: 763-773. doi: 10.1016/j.watres.2018.08.058
|
[5] |
王启镔, 宫徽, 朱越, 等. SBR运行模式对市政污水脱氮除磷性能的影响分析[J]. 环境科学学报, 2020, 40(04): 1167-1173.
|
[6] |
华光辉, 张波. 城市污水生物除磷脱氮工艺中的矛盾关系及对策[J]. 给水排水, 2000, 26(12) 12: 1-4.
|
[7] |
冯云刚, 刘新安, 高荣宁, 等. UCT工艺在西安鱼化污水处理厂的设计应用与调试[J]. 中国给水排水, 2019, 35(24): 66-69.
|
[8] |
王攀, 彭党聪. 预缺氧池配水比对Johannesburg工艺脱氮除磷效果的影响[J]. 环境工程学报, 2015, 9(4): 1645-1650. doi: 10.12030/j.cjee.20150420
|
[9] |
郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12-15. doi: 10.3969/j.issn.1002-8471.2018.06.003
|
[10] |
WANG Q, CHEN Q, CHEN J. Optimizing external carbon source addition in domestics wastewater treatment based on online sensoring data and a numerical model[J]. Water Science and Technology, 2017, 75(11): 2716-2725. doi: 10.2166/wst.2017.128
|
[11] |
赵伟华, 郑姝卉, 王凯. 污水反硝化除磷技术的机理与工艺研究进展[J]. 水处理技术, 2020, 46(7): 1-5.
|
[12] |
潘婷, 张淼, 范亚骏, 等. 基于碳源优化的反硝化除磷及微生物特性[J]. 中国环境科学, 2020, 40(7): 2901-2908. doi: 10.3969/j.issn.1000-6923.2020.07.013
|
[13] |
李微, 高明杰, 曾飞, 等. 温度和碳源对短程反硝化除磷效果的影响[J]. 水处理技术, 2020, 46(8): 55-59.
|
[14] |
WANG Q, CHEN Q. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39: 175-183. doi: 10.1016/j.jes.2015.10.012
|
[15] |
HENZE M, van LOOSDRECHT M, EKAMA G A et al. Biological wastewater treatment: principles, modelling and design[M]. London: IWA publishing, 2008.
|
[16] |
崔有为, 金常林, 王好韩, 等. 碳源对O/A-F/F模式积累内源聚合物及反硝化的影响[J]. 环境科学, 2019, 40(1): 336-342.
|
[17] |
刘建广, 付昆明, 杨义飞, 等. 不同电子受体对反硝化除磷菌缺氧吸磷的影响[J]. 环境科学, 2007, 28(7): 1472-1476. doi: 10.3321/j.issn:0250-3301.2007.07.011
|
[18] |
HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7
|
[19] |
RONG Y, LIU X, WEN L, et al. Advanced nutrient removal in a continuous A 2 /O process based on partial nitrification-anammox and denitrifying phosphorus removal[J]. Journal of Water Process Engineering, 2020, 36: 101245. doi: 10.1016/j.jwpe.2020.101245
|
[20] |
王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080
|