-
我国市政污水处理厂的日处理规模已超2×108 m3,市政污水的能耗高达2.5 GW(按每m3污水处理能耗0.3 kWh计算)[1]。污水中蕴含的能量中,约50%以化学能(有机物COD)的形式转入剩余污泥,因此,回收利用污泥COD的能量对降低市政污水处理行业的能耗和碳排放至关重要[2-3]。厌氧消化(anaerobic digestion, AD)是实现污泥减量化、稳定化和能量回收的主流技术之一。目前,我国已建成并运行的市政污泥厌氧消化工程处理规模超9 000 t∙d−1(按80%含水率的脱水污泥计),但仅占我国需处理市政污泥总量的7%左右,与英国(75%)、美国(60%)、欧盟国家(30%~50%)的差距明显。这表明,污泥厌氧消化亟需高效的过程强化(process intensification, PI)技术以提高甲烷产率[4]。
电产甲烷是一种基于微生物电解池(microbial electrolysis cell, MEC)促进有机物降解和产甲烷的PI技术[5]。在较低的外加电压条件下,阳极电活性微生物(electroactive bacteria, EAB)氧化分解有机物产生电子、质子和二氧化碳(CO2),同时,阴极微生物可通过直接或间接电子传递的途径。MEC-AD可加速污泥有机物水解、显著提高甲烷产率,并实现沼气生物品位升级,从而与传统AD工艺相比有较大的技术优势[6-8]。在MEC-AD中,阳极EAB与阴极产甲烷古菌通常以氢气为电子载体或依靠直接胞外电子传递机制进行种间电子传递[9]。此外,EAB与产甲烷古菌亦可利用具有导电性或氧化还原活性的碳材料,以提高产甲烷过程的种间电子传递效率[10-12]。这些非溶解性的粒状材料易与微生物形成活性颗粒,能进行厘米级别的远距离电子传递,远超依靠扩散机制的可溶性电子载体/穿梭体(例如甲酸、核黄素、绿脓素等,电子传递距离1~100 μm)[13-16]。
有研究表明,基于生物质中低温(300~500 ℃)热解过程形成的生物炭可通过富含醌基的表面官能团进行电子交换或内部类石墨结构的导电碳层进行直接电子传递[17-18]。YIN等[19]发现,通过在MEC-AD体系中投加适量的污泥基生物炭,污泥挥发性固体(VS)去除率提高了17.9%,甲烷产量提高了24.7%。然而,在更接近实际应用的连续式MEC-AD体系中,投加污泥炭是否具有长期促进效果,以及如何影响体系内微生物群落结构和产甲烷代谢途径,仍有待进一步探索。
基于上述原因,本研究拟构建并在连续进料运行模式下运行污泥MEC-AD系统,以污泥热解制备的生物炭为碳材料,研究投加污泥炭对污泥MEC-AD产甲烷的改善情况。在确定了最佳外加电压之后,考察污泥炭在不同有机负荷条件下对甲烷产率和体系稳定性的提高程度。最后,利用宏基因组手段分析体系内微生物种群结构与特定代谢功能,以揭示污泥炭提高MEC-AD甲烷产率的微生物学机制,为污泥炭强化MEC-AD技术应用于污泥厌氧消化处理工艺提供参考。
污泥炭强化微生物电解池提高污泥厌氧消化甲烷产率与系统稳定性
Sludge-derived biochar enhanced microbial electrolysis cell for improving biomethane productivity and system stability in anaerobic digestion of waste activated sludge
-
摘要: 投加污泥炭可有效改善利用微生物电解池厌氧消化(MEC-AD)甲烷产率偏低的问题,但其对MEC-AD体系的长期影响仍未知。研究了不同运行条件(外加电压、有机负荷率OLR)下,污泥炭对MEC-AD在连续进料运行模式下产甲烷效能的提高。首先,基于甲烷产率、电流密度等指标,确定最佳外加电压为1.5 V;然后,在相同外加电压(1.5 V)、不同OLR的条件下,比较了对照组(ME1.5)和投加污泥炭的实验组(MEBC1.5)的产甲烷和系统稳定性,OLR通过水力停留时间(HRT)控制。结果表明,当HRT从10 d逐步缩短至2.5 d,ME1.5与MEBC1.5的甲烷产率呈现先上升后下降的变化趋势,且MEBC1.5的甲烷产率始终高于ME1.5。这表明污泥炭在不同OLR运行条件下均可改善甲烷产率。微生物群落多样性分析结果表明,对比ME1.5与MEBC1.5,投加污泥炭使得生物阴极优势菌属Coprothermobacter、Fervidobacterium、Bellilinea、Methanosarcina的相对丰度分别增加了34.1%、186.6%、130.5%、9.5%。KEGG通路分析结果表明,MEBC1.5中乙酸裂解途径和H2还原CO2途径产甲烷代谢过程相关基因的丰度均有所提高。本研究结果可为污泥炭强化市政污泥MEC-AD产甲烷效能和相关的微生物机制提供参考。Abstract: Adding sludge-derived biochar has been demonstrated to improve the methanogenic performance of microbial electrolysis cell for anaerobic digestion (MEC-AD) of waste activated sludge (WAS) via short-term batch experiments. However, its long-term effect is still unclear. This paper investigated how sludge-derived biochar improved the performance of MEC-AD under continuous operation for producing methane from WAS with different operating conditions. First, optimal external voltage was determined to be 1.5 V based on the methane production rates and current densities. Next, to investigate the effect of biochar on methanogenic performance of MEC-AD, the system performance was compared between ME1.5 (control) and MEBC1.5 (with biochar addition) in terms of methane productivity and process stability. The reactors were operated under different organic loading rates (OLRs), which were maintained by adjusting the hydraulic retention time (HRT). With the HRT gradually decreased from 10 d to 2.5 d, the methane production rates in ME1.5 and MEBC1.5 showed a trend of first increasing and then decreasing, and the methane production rates in MEBC1.5 was always higher than ME1.5. This indicated that biochar could enhanced the methanogenic performance under high-rate operation. The relative abundances of dominant genera on biocathode, Coprothermobacter, Fervidobacterium, Bellilinea, and Methanosarcina were increased by 34.1%, 186.6%, 130.5% and 9.5%, respectively. The KEGG pathway analysis showed that the abundances of genes associated with both acetoclastic and hydrogenotrophic methanogenesis pathways both increased. This study demonstrated the stimulatory effect of sludge-derived biochar in MEC-AD for biomethane production from WAS and also elucidated the related microbial metabolism.
-
表 1 剩余污泥和接种污泥的主要理化性质
Table 1. Main characteristics of the waste activated sludge and inoculum
污泥
种类pH TS/
(g∙L−1)VS/
(g∙L−1)COD/
(mg∙L−1)SCOD/
(mg∙L−1)剩余
污泥6.97 ±
0.0330.2 ±
0.523.3 ±
0.329 800 ±
600350 ±
60接种
污泥7.61 ±
0.1340.3 ±
0.733.2 ±
0.435 800 ±
24102 540 ±
210表 2 污泥基生物炭灰分的主要元素质量分数
Table 2. Contents of main elements in sludge-derived biochar ash
% S Si Fe Al K Na Ca Mg Zn Ni Co 0.28 16.42 8.63 2.41 2.33 4.75 1.35 0.11 0.19 0.01 0.01 表 3 第二阶段各实验周期的运行参数
Table 3. Operation conditions for phase 2 experiment
运行周期 实验时间 进料底物 HRT/d OLR/(g∙(L∙d)−1) I 第1~40天 剩余污泥 10.0 2.5 II 第41~60天 剩余污泥 5.0 5.0 III 第61~70天 剩余污泥 2.5 10.0 IV 第71~80天 剩余污泥+甘油 5.0 8.0 表 4 ME1.5与MEBC1.5生物阴极微生物产甲烷过程关键酶的丰度差异
Table 4. Difference in abundance of key enzymes involving methanogenesis between ME1.5 and MEBC1.5
酶编号 酶名称 ME1.5 MEBC1.5 1.12.98.1 coenzyme F420 hydrogenase 3812 11526 1.12.98.2 5,10-methenyltetrahydromethanopterin hydrogenase 22 76 1.2.99.5 formylmethanofuran dehydrogenase 15952 17506 1.5.98.1 methylenetetrahydromethanopterin dehydrogenase 614 2068 1.5.98.2 5,10-methylenetetrahydromethanopterin reductase 678 2084 1.8.98.1 CoB-CoM heterodisulfide reductase 2850 8990 2.1.1.86 tetrahydromethanopterin S-methyltransferase 2846 11724 2.1.1.246 [methyl-Co(III) methanol-specific corrinoid protein]:coenzyme M methyltransferase 184 774 2.1.1.247 [methyl-Co(III) methylamine-specific corrinoid protein]:coenzyme M methyltransferase 54 262 2.3.1.169 acetyl-CoA decarbonylase/synthase, complex subunit beta 686 474 2.3.1.101 formylmethanofuran-tetrahydromethanopterin N-formyltransferase 4394 4274 2.3.1.8 phosphate acetyltransferase 302 444 2.7.2.1 acetate kinase 5452 2758 2.8.4.1 coenzyme-B sulfoethylthiotransferase 3766 13934 3.5.4.27 methenyltetrahydromethanopterin cyclohydrolase 812 2244 6.2.1.1 acetate-CoA ligase 2702 9338 -
[1] QU J, WANG H, WANG K, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 88. [2] MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer: Can this be achieved?[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106. [3] ALLOUL A, GANIGUE R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742. [4] 于亚梅, 沈雁文, 朱南文, 等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响[J]. 环境工程学报, 2020, 14(3): 807-820. doi: 10.12030/j.cjee.201908046 [5] CHENG S, CALL D F, LOGAN B E, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43: 3953-3958. [6] LIU W, CAI, GUO Z, WANG L, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. doi: 10.1016/j.renene.2016.01.082 [7] ZHAO Z, ZHANG Y, QUAN X, et al. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J]. Bioresource Technology, 2016, 200: 235-244. doi: 10.1016/j.biortech.2015.10.021 [8] WANG X T, ZHAO L, CHEN C, et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge[J]. Chemical Engineering Journal, 2021, 413: 127472. doi: 10.1016/j.cej.2020.127472 [9] FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232. [10] REN G, CHEN P, YU J, et al. Recyclable magnetite-enhanced electromethanogenesis for biomethane production from wastewater[J]. Water Research, 2019, 166: 115095. doi: 10.1016/j.watres.2019.115095 [11] BAEK G, KIM J, KIM J, et al. Individual and combined effects of magnetite addition and external voltage application on anaerobic digestion of dairy wastewater[J]. Bioresource Technology, 2020, 297: 122443. doi: 10.1016/j.biortech.2019.122443 [12] QIN X, LU X, CAI T, et al. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge[J]. Science of the Total Environment, 2021, 789: 147859. doi: 10.1016/j.scitotenv.2021.147859 [13] STORCK T, VIRDIS B, BATSTONE D J. Modelling extracellular limitations for mediated versus direct interspecies electron transfer[J]. Multidisciplinary Journal of Microbial Ecology, 2016, 10(3): 621-31. [14] GLASSER N R, SAUNDERS S H, NEWMAN D K, et al. The colorful world of extracellular electron shuttles[J]. Annual Review of Microbiology, 2017, 71: 731-751. doi: 10.1146/annurev-micro-090816-093913 [15] BAI Y, MELLAGE A, CIRPKA O A, et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales[J]. Environmental Science & Technology, 2020, 54(7): 4131-4139. [16] LOVLEY D, MALVANKAR N S, VARGAS M, et al. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9): 573-579. [17] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344. [18] SUN T, LEVIN B D, GUZMAN J J, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8: 14873. doi: 10.1038/ncomms14873 [19] YIN C, SHEN Y, YUAN R, et al. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production[J]. Bioresource Technology, 2019, 284: 315-324. doi: 10.1016/j.biortech.2019.03.146 [20] LAM, LUO D H, RUIBANG, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 城镇污水处理厂污泥泥质: GB 24188-2009[S]. 北京: 中国环境科学出版社, 2007. [22] 中华人民共和国环境保护部. 水质化学需氧量重铬酸盐法: HJ 828-2017[S]. 北京: 中国环境科学出版社, 2017. [23] JUHL J L, PHILIPPE J, MICHAEL K, et al. NOG: Automated construction and annotation of orthologous groups of genes[J]. Nucleic Acids Research, 2008, 36: 250-254. [24] NGUYEN D, WU Z, SHRESTHA S, et al. Intermittent micro-aeration: New strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion[J]. Water Research, 2019, 166: 115080. doi: 10.1016/j.watres.2019.115080 [25] CAI W, LIU W, YANG C, et al. Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4913-4921. [26] HO D P, JENSEN P D, BATSTONE D J, et al. Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge[J]. Applied and Environmental Microbiology, 2013, 79(20): 6491-6500. doi: 10.1128/AEM.01730-13 [27] DE VRIEZE J, DEVOOGHT A, WALRAEDT D, et al. Enrichment of methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5177-5187. doi: 10.1007/s00253-016-7503-y [28] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17(5): 307-319. doi: 10.1038/s41579-019-0173-x [29] KUNATH B J, DELOGU F, NAAS A E, et al. From proteins to polysaccharides: Lifestyle and genetic evolution of coprothermobacter proteolyticus[J]. Multidisciplinary Journal of Microbial Ecology, 2019, 13(3): 603-617. [30] YAMADA T, IMACHI H, OHASHI A, et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(10): 2299-2306. doi: 10.1099/ijs.0.65098-0 [31] LÜ C, SHEN Y, LI C, et al. Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste activated sludge: Beyond the direct interspecies electron transfer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 12626-12636.