[1] QU J, WANG H, WANG K, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 88.
[2] MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer: Can this be achieved?[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106.
[3] ALLOUL A, GANIGUE R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742.
[4] 于亚梅, 沈雁文, 朱南文, 等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响[J]. 环境工程学报, 2020, 14(3): 807-820. doi: 10.12030/j.cjee.201908046
[5] CHENG S, CALL D F, LOGAN B E, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43: 3953-3958.
[6] LIU W, CAI, GUO Z, WANG L, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. doi: 10.1016/j.renene.2016.01.082
[7] ZHAO Z, ZHANG Y, QUAN X, et al. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J]. Bioresource Technology, 2016, 200: 235-244. doi: 10.1016/j.biortech.2015.10.021
[8] WANG X T, ZHAO L, CHEN C, et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge[J]. Chemical Engineering Journal, 2021, 413: 127472. doi: 10.1016/j.cej.2020.127472
[9] FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232.
[10] REN G, CHEN P, YU J, et al. Recyclable magnetite-enhanced electromethanogenesis for biomethane production from wastewater[J]. Water Research, 2019, 166: 115095. doi: 10.1016/j.watres.2019.115095
[11] BAEK G, KIM J, KIM J, et al. Individual and combined effects of magnetite addition and external voltage application on anaerobic digestion of dairy wastewater[J]. Bioresource Technology, 2020, 297: 122443. doi: 10.1016/j.biortech.2019.122443
[12] QIN X, LU X, CAI T, et al. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge[J]. Science of the Total Environment, 2021, 789: 147859. doi: 10.1016/j.scitotenv.2021.147859
[13] STORCK T, VIRDIS B, BATSTONE D J. Modelling extracellular limitations for mediated versus direct interspecies electron transfer[J]. Multidisciplinary Journal of Microbial Ecology, 2016, 10(3): 621-31.
[14] GLASSER N R, SAUNDERS S H, NEWMAN D K, et al. The colorful world of extracellular electron shuttles[J]. Annual Review of Microbiology, 2017, 71: 731-751. doi: 10.1146/annurev-micro-090816-093913
[15] BAI Y, MELLAGE A, CIRPKA O A, et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales[J]. Environmental Science & Technology, 2020, 54(7): 4131-4139.
[16] LOVLEY D, MALVANKAR N S, VARGAS M, et al. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9): 573-579.
[17] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344.
[18] SUN T, LEVIN B D, GUZMAN J J, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8: 14873. doi: 10.1038/ncomms14873
[19] YIN C, SHEN Y, YUAN R, et al. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production[J]. Bioresource Technology, 2019, 284: 315-324. doi: 10.1016/j.biortech.2019.03.146
[20] LAM, LUO D H, RUIBANG, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 城镇污水处理厂污泥泥质: GB 24188-2009[S]. 北京: 中国环境科学出版社, 2007.
[22] 中华人民共和国环境保护部. 水质化学需氧量重铬酸盐法: HJ 828-2017[S]. 北京: 中国环境科学出版社, 2017.
[23] JUHL J L, PHILIPPE J, MICHAEL K, et al. NOG: Automated construction and annotation of orthologous groups of genes[J]. Nucleic Acids Research, 2008, 36: 250-254.
[24] NGUYEN D, WU Z, SHRESTHA S, et al. Intermittent micro-aeration: New strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion[J]. Water Research, 2019, 166: 115080. doi: 10.1016/j.watres.2019.115080
[25] CAI W, LIU W, YANG C, et al. Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4913-4921.
[26] HO D P, JENSEN P D, BATSTONE D J, et al. Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge[J]. Applied and Environmental Microbiology, 2013, 79(20): 6491-6500. doi: 10.1128/AEM.01730-13
[27] DE VRIEZE J, DEVOOGHT A, WALRAEDT D, et al. Enrichment of methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5177-5187. doi: 10.1007/s00253-016-7503-y
[28] LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17(5): 307-319. doi: 10.1038/s41579-019-0173-x
[29] KUNATH B J, DELOGU F, NAAS A E, et al. From proteins to polysaccharides: Lifestyle and genetic evolution of coprothermobacter proteolyticus[J]. Multidisciplinary Journal of Microbial Ecology, 2019, 13(3): 603-617.
[30] YAMADA T, IMACHI H, OHASHI A, et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(10): 2299-2306. doi: 10.1099/ijs.0.65098-0
[31] LÜ C, SHEN Y, LI C, et al. Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste activated sludge: Beyond the direct interspecies electron transfer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 12626-12636.