-
禽粪污染是我国农村面临的主要污染之一[1]。据统计,我国每年家禽存栏量约为60×108 只,以粪排泄系数0.125 kg·d−1计,每年禽类粪污产量高达2.7×108 t。由于禽类粪便综合利用率低,其大量流入环境对生态环境具有极大威胁[2]。目前,全国约25个省份的耕地均面临着粪便磷(P)污染风险,其中3省市因粪便P超标,农地污染风险指数达到最高等级[3-4]。就总磷(TP)而言,禽类粪尿平均达5.37~6.20 kg·t−1,远高于牲畜类(0.52~3.41 kg·t−1)[2]。因降水、灌溉的冲刷淋洗作用,粪尿P大量流失,进而带来土壤面源污染、地下水污染及水体富营养化等一系列环境问题[5-6]。
近年来,热解处理技术在粪便[7]、污泥[8]、作物秸秆[9]等固废资源化利用方面备受关注。一方面,随着热解温度的提高,生物炭中TP含量不断增加[10],植物营养得到富集;另一方面,在热解过程中,高温使得生物炭P的水溶性降低,P的稳定性明显增加[11]。高温热解会导致植源生物炭中P由不稳定态向稳定态转变,形成更稳定的含P矿物,如纤磷钙铝石(CaAl3(OH)5(PO4)2)和银星石(Al3(OH)3(PO4)2·5H2O)[12]。在污泥生物炭中,相比低温,更高温度促使更多缓释P的形成[13]。在鸡粪生物炭中,随着热解温度的升高,P的形态也由植酸(C6H18O24P6)依次向磷镁石(Mg3(PO4)2)、方解石转化,水溶态P不断降低[7]。总之,热解温度会显著影响P形态[14],但鲜见有关借用Hedley分级方法探究生物炭中P的生物有效性及其形态动态变化的报道[12]。
畜禽粪便制备生物炭后再进行农业利用能有效降低土壤中TP的淋失[6, 15],淋失量除受生物炭来源、生物炭表面性质[16]等本身的性质影响外,还受生物炭添加量[17]、降水[18]、淋溶强度[19]等因素影响。本研究以不同热解温度制备畜禽粪便生物炭,并将生物炭中P按Hedley连续提取法进行分级;同时,探讨5次降水对施加生物炭的淋溶柱中P损失的影响,以期为生物炭应用于农田后地下径流中P污染风险控制提供参考。
热解温度对鸡粪生物炭磷形态及磷淋失的影响
Effects of pyrolysis temperature on phosphorus speciation and phosphorus leaching loss of chicken manure biochar
-
摘要: 针对粪肥施用时的磷(P)污染风险,采用高温热解技术制备生物炭进行P固定,以降低其淋失风险。通过P分级法研究了生物炭中P形态随热解温度的变化规律,并通过土柱淋溶实验研究了5次模拟降水下鸡粪或生物炭中的P淋失率。结果表明,鸡粪生物炭中P的固定规律是:随热解温度升高,稳定态HCl提取态磷(HCl-P)不断增加,成为生物炭中P稳定化的最主要去向。低温(300 ℃)热解条件下,不稳定的H2O-P是HCl-P增加的主要贡献者;而高温(600 ℃以上)条件下,中度稳定的NaOH-P和NaHCO3-P是主要贡献者。随着降水次数的增加,鸡粪和生物炭处理的土壤中总磷(TP)和无机磷(Pi)的淋失率均不断增加。相比于鸡粪,所有生物炭处理经5次降水后的TP、Pi、有机磷(Po)的总淋失率依次降低了56.62%~67.74%、45.18%~64.15%、82.32%~92.82%。综合能耗考虑,300 ℃是制备鸡粪生物炭的理想温度并可防止P的淋失。本研究结果可为粪肥农用过程中土壤P污染控制提供参考。Abstract: For the phosphorus (P) pollution risk of manure application, manure-derived biochar was prepared by pyrolysis technology for stabilizing P and reducing its leaching risk. This paper studied P form variation of the biochar at different pyrolysis temperature by the P grading method, and P leaching from soil column with chicken manure or biochar addition under five simulated rainfalls. The results showed that with the increasing pyrolysis temperature, the HCl-P kept increasing and became the main destination of P stabilization in chicken manure biochar. The soluble H2O-P was the main contributor to the increase of HCl-P at low temperature (300 ℃), while the moderately stable NaOH-P and NaHCO3-P were the main contributors at high temperature (above 600 ℃). With the increasing rainfall times, the leaching loss of TP and Pi in all treatments increased continuously. As compared with chicken manure, the total leaching rates of TP, Pi and Po in biochar treatments decreased by 56.62%~67.74%, 45.18%~64.15% and 82.32%~92.82%, respectively. Considering energy consumption, 300 ℃ is the ideal temperature for preparing chicken manure biochar to prevent phosphorus leaching. This research provides reference for the control of soil P pollution in manure fertilization.
-
Key words:
- Chicken manure /
- Pyrolysis temperature /
- Biochar /
- Hedley extraction /
- Phosphorus loss /
- Leaching /
- Upland soil
-
表 1 鸡粪生物质炭得率、pH、电导率及P组分
Table 1. Properties of chicken manure biochar: yield, pH, electric conductivity and P speciation
处理组 生物炭得率/% pH 电导率/(μs·cm−1) TP质量分数/(g·kg−1) Pi质量分数/(g·kg−1) Po质量分数/(g·kg−1) CM − 8.1±0.1f 4 568.0±1 368.2a 22.59±2.30d 15.26±1.53d 7.33±2.04a BC300 73.8±2.9a 9.5±0.0e 1 269.3±131.2c 29.78±2.53cd 20.02±0.68c 9.75±2.62a BC400 58.6±1.9b 10.0±0.0d 1 488.0±24.1b 36.09±2.47bc 32.30±2.57ab 3.79±0.28a BC500 56.9±0.7b 10.4±0.1c 1 266.7±2.5c 37.27±3.00bc 31.36±1.33b 5.91±2.03a BC600 52.2±0.6c 10.5±0.0b 1 345.7±3.2bc 45.09±6.98a 35.24±2.09a 9.85±8.84a BC700 50.6±1.0c 10.9±0.1a 1 032.0±17.8d 42.56±4.84ab 33.11±2.57ab 9.44±4.68a 注:表中TP、Pi和Po分别代表总磷、无机磷和有机磷;表中数据以平均值±标准偏差表示;表中同列标有不同小写字母表示各处理间差异显著(P<0.05)。 表 2 不同处理土柱TP淋失率
Table 2. Total phosphorus loss rate in soil columns with different treatments
‰ 处理组 1次降水后淋失率 2次降水后淋失率 3次降水后淋失率 4次降水后淋失率 5次降水后淋失率 累计淋失率 BC300 1.59±0.17b 2.18±0.34b 2.76±0.32b 3.74±0.36c 4.67±0.27c 14.94±0.96b BC400 1.95±0.22b 2.04±0.32b 3.01±0.75b 4.00±0.95c 5.97±1.97bc 16.97±3.41b BC500 1.56±0.18b 2.19±0.34b 3.10±0.73b 6.02±0.23b 7.23±0.74b 20.09±1.42b BC600 1.20±0.02b 1.83±0.21b 2.60±0.53b 4.70±0.53bc 4.98±0.19c 15.31±0.82b BC700 1.01±0.25b 1.52±0.07b 2.75±0.52b 4.80±0.11bc 5.03±0.32c 15.12±0.44b CM 7.74±2.69a 9.29±2.14a 8.92±1.40a 9.94±1.31a 10.43±1.35a 46.32±7.49a 注:同一列数据后字母不同表示处理间差异达到显著水平(P<0.05)。 表 3 不同处理土柱Pi淋失率
Table 3. Inorganic phosphorus loss rate in soil columns with different treatments
‰ 处理组 1次降水后淋失率 2次降水后淋失率 3次降水后淋失率 4次降水后淋失率 5次降水后淋失率 累计淋失率 BC300 1.32±0.19b 1.71±0.33b 2.61±0.38b 3.54±0.53d 4.18±0.54c 13.36±1.24c BC400 1.58±0.29b 1.86±0.37b 2.94±0.53b 4.19±1.11cd 5.97±1.41b 16.54±3.61c BC500 1.49±0.18b 2.09±0.19b 2.97±0.83b 5.76±0.36b 8.11±0.30a 20.43±1.34b BC600 1.06±0.05b 1.46±0.11b 2.53±0.33b 4.55±0.61cd 5.72±0.07b 15.33±0.66c BC700 1.00±0.17b 1.23±0.18b 3.05±0.21b 4.80±0.45bc 5.01±0.18b 15.10±0.48c CM 6.11±1.96a 7.42±1.26a 7.38±0.66a 7.94±0.28a 8.42±0.75a 37.27±3.41a 注:同一列数据后字母不同表示处理间差异达到显著水平(P<0.05)。 表 4 不同处理土柱Po淋失率
Table 4. Organic phosphorus loss rate in soil columns with different treatments
‰ 处理组 1次降水后淋失率 2次降水后淋失率 3次降水后淋失率 4次降水后淋失率 5次降水后淋失率 累计淋失率 BC300 0.26±0.04b 0.46±0.39b 0.15±0.06b 0.24±0.22b 0.49±0.35b 1.60±0.82b BC400 0.37±0.28b 0.36±0.36b 0.11±0.18b 0±0b 0.42±0.37b 1.26±0.64b BC500 0.12±0.11b 0.14±0.12b 0.13±0.12b 0.26±0.18b 0±0b 0.65±0.29b BC600 0.14±0.05b 0.37±0.13b 0.10±0.17b 0.14±0.09b 0±0b 0.76±0.25b BC700 0.04±0.04b 0.29±0.11b 0.06±0.10b 0.18±0.17b 0.11±0.19b 0.67±0.09b CM 1.62±1.57a 1.87±1.11a 1.54±0.79a 2.00±1.35a 2.02±0.64a 9.05±4.69a 注:同一列数据后字母不同表示处理间差异达到显著水平(P<0.05)。 -
[1] 王方浩, 马文奇, 窦争霞, 等. 中国畜禽粪便产生量估算及环境效应[J]. 中国环境科学, 2006, 26(5): 614-617. doi: 10.3321/j.issn:1000-6923.2006.05.024 [2] 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168-1176. doi: 10.11654/jaes.2020-0218 [3] 金磊, 王立志. 畜禽粪便磷排放减少的措施研究进展[J]. 饲料工业, 2020, 41(9): 58-63. [4] 耿维, 胡林, 崔建宇, 等. 中国区域畜禽粪便能源潜力及总量控制研究[J]. 农业工程学报, 2013, 29(1): 171-179. [5] GAGNON B, DEMERS I, ZIADI N, et al. Forms of phosphorus in composts and in compost-amended soils following incubation[J]. Canadian Journal of Soil Science, 2012, 92: 711-721. doi: 10.4141/cjss2012-032 [6] LIANG Y, CAO X D, ZHAO L, et al. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property[J]. Journal of Environmental Quality, 2014, 43: 1504-1509. doi: 10.2134/jeq2014.01.0021 [7] JIANG Y B, REN C, GUO H Y, et al. Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy[J]. Environmental Science and Technology, 2019, 53: 13841-13849. doi: 10.1021/acs.est.9b03261 [8] 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399. [9] DAI L C, LI H, TAN F R, et al. Biochar: a potential route for recycling of phosphorus in agricultural residues[J]. Global Change Biology Bioenergy, 2016, 8: 852-858. doi: 10.1111/gcbb.12365 [10] 王煌平, 张青, 章赞德, 等. 不同热解温度限氧制备的畜禽粪便生物炭养分特征[J]. 农业工程学报, 2018, 34(20): 233-239. doi: 10.11975/j.issn.1002-6819.2018.20.030 [11] 王立华, 林琦. 热解温度对畜禽粪便制备的生物质炭性质的影响[J]. 浙江大学学报(理学版), 2014, 41(2): 185-190. [12] XU G, ZHANG Y, SHAO H B, et al. Pyrolysis temperature affects phosphorus transformation in biochar: chemical fractionation and (31)P NMR analysis[J]. Science of the Total Environment, 2016, 569-570: 65-72. doi: 10.1016/j.scitotenv.2016.06.081 [13] QIAN T T, JIANG H. Migration of phosphorus in sewage sludge during different thermal treatment processes[J]. ACS Sustainable Chemistry and Engineering, 2014, 2: 1411-1419. doi: 10.1021/sc400476j [14] GHANIM B M, WITOLD K, LEAHY J J. Speciation of nutrients in hydrochar produced from hydrothermal carbonization of poultry litter under different treatment conditions[J]. ACS Sustainable Chemistry and Engineering, 2018, 6: 11265-11272. doi: 10.1021/acssuschemeng.7b04768 [15] LI Z G, GU C M, ZHANG R H, et al. The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China[J]. Agricultural Water Management, 2017, 185: 145-150. doi: 10.1016/j.agwat.2017.02.018 [16] 刘玉学, 吕豪豪, 石岩, 等. 生物质炭对土壤养分淋溶的影响及潜在机理研究进展[J]. 应用生态学报, 2015, 26(1): 304-310. [17] HOSSEINI S H, LIANG X Q, NIYUNGEKO C, et al. Effect of sheep manure-derived biochar on colloidal phosphorus release in soils from various land uses[J]. Environmental Science and Pollution Research, 2019, 26: 36367-36379. doi: 10.1007/s11356-019-06762-y [18] LU Y Y, SILVEIRA M L, O'CONNOR G A, et al. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching[J]. Journal of Environmental Quality, 2020, 49: 1408-1420. doi: 10.1002/jeq2.20139 [19] 王忠江, 张正, 刘卓, 等. 生物炭配施沼液对淋溶状态下土壤养分的影响[J]. 农业机械学报, 2018, 49(11): 260-267. doi: 10.6041/j.issn.1000-1298.2018.11.030 [20] 中华人民共和国国家质量技术监督局, 中国国家标准化管理委员会. 木质活性炭试验方法pH值的测定: GB/T 12496.7-1999[S]. 北京: 中国标准出版社, 1999 [21] 中华人民共和国国家林业局, 中国国家标准化管理委员会. 活性炭水萃取电导率测定方法: LY/T 1616-2004[S]. 北京: 中国标准出版社, 2004 [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 168-169 [23] 中华人民共和国国家环境保护局, 中国国家标准化管理委员会. 水质 总磷的测定 钼酸铵分光光度法: GB/T 11893-1989[S]. 北京: 中国标准出版社, 1989 [24] ZUO L Q, LIN R P, SHI Q, et al. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate[J]. Water, Air, and Soil Pollution, 2020, 231: 553. doi: 10.1007/s11270-020-04924-0 [25] UCHIMIYA M, HIRADATE S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 1802-1809. doi: 10.1021/jf4053385 [26] LIANG X Q, JIN Y, HE M M, et al. Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures[J]. Environmental Science and Pollution Research, 2018, 25: 25780-25788. doi: 10.1007/s11356-017-0640-8 [27] HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2020, 2: 379-420. doi: 10.1007/s42773-020-00065-z [28] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报, 2017, 23(6): 1622-1630. doi: 10.11674/zwyf.17031 [29] 尚斌, 董红敏, 朱志平, 等. 畜禽粪便热解气体的红外光谱分析[J]. 农业工程学报, 2010, 26(4): 259-263. doi: 10.3969/j.issn.1002-6819.2010.04.044 [30] WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217: 240-261. doi: 10.1016/j.fuel.2017.12.054 [31] 单瑞峰, 宋俊瑶, 邓若男, 等. 不同类型生物炭理化特性及其对土壤持水性的影响[J]. 水土保持通报, 2017, 37(5): 63-68. [32] 周强, 黄代宽, 余浪, 等. 热解温度和时间对生物炭pH的影响[J]. 地球环境学报, 2015, 6(3): 195-200. doi: 10.7515/JEE201503008 [33] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102: 3488-3497. doi: 10.1016/j.biortech.2010.11.018 [34] 袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展[J]. 土壤, 2012, 44(4): 541-547. doi: 10.3969/j.issn.0253-9829.2012.04.003 [35] GONDE K, MIERZWA-HERSZTEK M, KOPEĆ M, et al. Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P[J]. Polish Journal of Environmental Studies, 2019, 28(1): 103-111. [36] CH'NG H Y, AHMED O H, MAJID N M A. Improving phosphorus availability, nutrient uptake and dry matter production of Zea Mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost[J]. Experimental Agriculture, 2016, 52(3): 447-465. doi: 10.1017/S0014479715000204 [37] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011, 2: 1-9. doi: 10.3969/j.issn.1673-6257.2011.01.001 [38] SHARPLEY A, MOYER B. Phosphorus forms in manure and compost and their release during simulated rainfall[J]. Journal of Environmental Quality, 2000, 29: 1462-1469. [39] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. doi: 10.1016/j.biortech.2011.11.084 [40] NEGASSA W, LEINWEBER P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review[J]. Journal of Plant Nutrition and Soil Science, 2009, 172: 305-325. doi: 10.1002/jpln.200800223 [41] YANG L, WU Y, WANG Y, et al. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus[J]. Science of the Total Environment, 2021, 758: 143657. doi: 10.1016/j.scitotenv.2020.143657 [42] JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Australian Journal of Soil Research, 2010, 48(6/7): 501-515. [43] NOVAK J M, JOHNSON M G, SPOKAS K A. Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse[J]. Frontiers in Sustainable Food Systems, 2018, 2: 54. doi: 10.3389/fsufs.2018.00054 [44] SUN K, QIU M Y, HAN L F, et al. Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions[J]. Science of the Total Environment, 2018, 634: 1300-1307. doi: 10.1016/j.scitotenv.2018.04.099 [45] MIN X, WU J, GANG Y, et al. Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters[J]. Environmental Chemistry Letters, 2019, 17: 533-541. doi: 10.1007/s10311-018-0802-z