[1] 王方浩, 马文奇, 窦争霞, 等. 中国畜禽粪便产生量估算及环境效应[J]. 中国环境科学, 2006, 26(5): 614-617. doi: 10.3321/j.issn:1000-6923.2006.05.024
[2] 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6): 1168-1176. doi: 10.11654/jaes.2020-0218
[3] 金磊, 王立志. 畜禽粪便磷排放减少的措施研究进展[J]. 饲料工业, 2020, 41(9): 58-63.
[4] 耿维, 胡林, 崔建宇, 等. 中国区域畜禽粪便能源潜力及总量控制研究[J]. 农业工程学报, 2013, 29(1): 171-179.
[5] GAGNON B, DEMERS I, ZIADI N, et al. Forms of phosphorus in composts and in compost-amended soils following incubation[J]. Canadian Journal of Soil Science, 2012, 92: 711-721. doi: 10.4141/cjss2012-032
[6] LIANG Y, CAO X D, ZHAO L, et al. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property[J]. Journal of Environmental Quality, 2014, 43: 1504-1509. doi: 10.2134/jeq2014.01.0021
[7] JIANG Y B, REN C, GUO H Y, et al. Speciation transformation of phosphorus in poultry litter during pyrolysis: insights from X-ray diffraction, fourier transform infrared, and solid-state NMR spectroscopy[J]. Environmental Science and Technology, 2019, 53: 13841-13849. doi: 10.1021/acs.est.9b03261
[8] 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399.
[9] DAI L C, LI H, TAN F R, et al. Biochar: a potential route for recycling of phosphorus in agricultural residues[J]. Global Change Biology Bioenergy, 2016, 8: 852-858. doi: 10.1111/gcbb.12365
[10] 王煌平, 张青, 章赞德, 等. 不同热解温度限氧制备的畜禽粪便生物炭养分特征[J]. 农业工程学报, 2018, 34(20): 233-239. doi: 10.11975/j.issn.1002-6819.2018.20.030
[11] 王立华, 林琦. 热解温度对畜禽粪便制备的生物质炭性质的影响[J]. 浙江大学学报(理学版), 2014, 41(2): 185-190.
[12] XU G, ZHANG Y, SHAO H B, et al. Pyrolysis temperature affects phosphorus transformation in biochar: chemical fractionation and (31)P NMR analysis[J]. Science of the Total Environment, 2016, 569-570: 65-72. doi: 10.1016/j.scitotenv.2016.06.081
[13] QIAN T T, JIANG H. Migration of phosphorus in sewage sludge during different thermal treatment processes[J]. ACS Sustainable Chemistry and Engineering, 2014, 2: 1411-1419. doi: 10.1021/sc400476j
[14] GHANIM B M, WITOLD K, LEAHY J J. Speciation of nutrients in hydrochar produced from hydrothermal carbonization of poultry litter under different treatment conditions[J]. ACS Sustainable Chemistry and Engineering, 2018, 6: 11265-11272. doi: 10.1021/acssuschemeng.7b04768
[15] LI Z G, GU C M, ZHANG R H, et al. The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China[J]. Agricultural Water Management, 2017, 185: 145-150. doi: 10.1016/j.agwat.2017.02.018
[16] 刘玉学, 吕豪豪, 石岩, 等. 生物质炭对土壤养分淋溶的影响及潜在机理研究进展[J]. 应用生态学报, 2015, 26(1): 304-310.
[17] HOSSEINI S H, LIANG X Q, NIYUNGEKO C, et al. Effect of sheep manure-derived biochar on colloidal phosphorus release in soils from various land uses[J]. Environmental Science and Pollution Research, 2019, 26: 36367-36379. doi: 10.1007/s11356-019-06762-y
[18] LU Y Y, SILVEIRA M L, O'CONNOR G A, et al. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching[J]. Journal of Environmental Quality, 2020, 49: 1408-1420. doi: 10.1002/jeq2.20139
[19] 王忠江, 张正, 刘卓, 等. 生物炭配施沼液对淋溶状态下土壤养分的影响[J]. 农业机械学报, 2018, 49(11): 260-267. doi: 10.6041/j.issn.1000-1298.2018.11.030
[20] 中华人民共和国国家质量技术监督局, 中国国家标准化管理委员会. 木质活性炭试验方法pH值的测定: GB/T 12496.7-1999[S]. 北京: 中国标准出版社, 1999
[21] 中华人民共和国国家林业局, 中国国家标准化管理委员会. 活性炭水萃取电导率测定方法: LY/T 1616-2004[S]. 北京: 中国标准出版社, 2004
[22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 168-169
[23] 中华人民共和国国家环境保护局, 中国国家标准化管理委员会. 水质 总磷的测定 钼酸铵分光光度法: GB/T 11893-1989[S]. 北京: 中国标准出版社, 1989
[24] ZUO L Q, LIN R P, SHI Q, et al. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate[J]. Water, Air, and Soil Pollution, 2020, 231: 553. doi: 10.1007/s11270-020-04924-0
[25] UCHIMIYA M, HIRADATE S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 1802-1809. doi: 10.1021/jf4053385
[26] LIANG X Q, JIN Y, HE M M, et al. Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures[J]. Environmental Science and Pollution Research, 2018, 25: 25780-25788. doi: 10.1007/s11356-017-0640-8
[27] HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2020, 2: 379-420. doi: 10.1007/s42773-020-00065-z
[28] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报, 2017, 23(6): 1622-1630. doi: 10.11674/zwyf.17031
[29] 尚斌, 董红敏, 朱志平, 等. 畜禽粪便热解气体的红外光谱分析[J]. 农业工程学报, 2010, 26(4): 259-263. doi: 10.3969/j.issn.1002-6819.2010.04.044
[30] WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217: 240-261. doi: 10.1016/j.fuel.2017.12.054
[31] 单瑞峰, 宋俊瑶, 邓若男, 等. 不同类型生物炭理化特性及其对土壤持水性的影响[J]. 水土保持通报, 2017, 37(5): 63-68.
[32] 周强, 黄代宽, 余浪, 等. 热解温度和时间对生物炭pH的影响[J]. 地球环境学报, 2015, 6(3): 195-200. doi: 10.7515/JEE201503008
[33] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102: 3488-3497. doi: 10.1016/j.biortech.2010.11.018
[34] 袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展[J]. 土壤, 2012, 44(4): 541-547. doi: 10.3969/j.issn.0253-9829.2012.04.003
[35] GONDE K, MIERZWA-HERSZTEK M, KOPEĆ M, et al. Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P[J]. Polish Journal of Environmental Studies, 2019, 28(1): 103-111.
[36] CH'NG H Y, AHMED O H, MAJID N M A. Improving phosphorus availability, nutrient uptake and dry matter production of Zea Mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost[J]. Experimental Agriculture, 2016, 52(3): 447-465. doi: 10.1017/S0014479715000204
[37] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011, 2: 1-9. doi: 10.3969/j.issn.1673-6257.2011.01.001
[38] SHARPLEY A, MOYER B. Phosphorus forms in manure and compost and their release during simulated rainfall[J]. Journal of Environmental Quality, 2000, 29: 1462-1469.
[39] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. doi: 10.1016/j.biortech.2011.11.084
[40] NEGASSA W, LEINWEBER P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review[J]. Journal of Plant Nutrition and Soil Science, 2009, 172: 305-325. doi: 10.1002/jpln.200800223
[41] YANG L, WU Y, WANG Y, et al. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus[J]. Science of the Total Environment, 2021, 758: 143657. doi: 10.1016/j.scitotenv.2020.143657
[42] JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Australian Journal of Soil Research, 2010, 48(6/7): 501-515.
[43] NOVAK J M, JOHNSON M G, SPOKAS K A. Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse[J]. Frontiers in Sustainable Food Systems, 2018, 2: 54. doi: 10.3389/fsufs.2018.00054
[44] SUN K, QIU M Y, HAN L F, et al. Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions[J]. Science of the Total Environment, 2018, 634: 1300-1307. doi: 10.1016/j.scitotenv.2018.04.099
[45] MIN X, WU J, GANG Y, et al. Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters[J]. Environmental Chemistry Letters, 2019, 17: 533-541. doi: 10.1007/s10311-018-0802-z