Processing math: 100%

H2O2添加对城市污泥水热处理产物理化特性的影响

张培争, 张守玉, 张一帆, 胡南, 吴玉新. H2O2添加对城市污泥水热处理产物理化特性的影响[J]. 环境工程学报, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
引用本文: 张培争, 张守玉, 张一帆, 胡南, 吴玉新. H2O2添加对城市污泥水热处理产物理化特性的影响[J]. 环境工程学报, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
ZHANG Peizheng, ZHANG Shouyu, ZHANG Yifan, HU Nan, WU Yuxin. Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
Citation: ZHANG Peizheng, ZHANG Shouyu, ZHANG Yifan, HU Nan, WU Yuxin. Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140

H2O2添加对城市污泥水热处理产物理化特性的影响

    作者简介: 张培争(1995—),男,硕士研究生。研究方向:污泥资源化处理处置。E-mail:z19821222142@163.com
    通讯作者: 张守玉(1971—),男,博士,教授。研究方向:生物质能清洁利用与污泥高效处理处置。E-mail:zhang-guo@163.com
  • 基金项目:
    国家自然科学基金重点国际(地区)合作研究项目(51761125011);吉林省自然科学基金(YDZJ202101ZYTS180)
  • 中图分类号: TX6

Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge

    Corresponding author: ZHANG Shouyu, zhang-guo@163.com
  • 摘要: 针对城市污泥水热处理能耗高的问题,采用添加H2O2的方式实现在较低温度下强化水热处理效果,以达到降低能耗的效果。在高压反应釜内进行了城市污泥水热处理和水热联合H2O2处理实验,探讨了添加不同质量分数(5%、10%和15%)H2O2对处理后产物分布、固相产物含水率及其中重金属(Pb、Cd)质量浓度与赋存形态、液相产物pH及其中挥发性脂肪酸(Volatile Fatty Acids, VFAs)与氨氮(NH3-N)质量浓度的影响。结果表明,在水热温度为200 ℃、添加H2O2质量分数为15%时,污泥产物理化特性改善效果最佳。与单纯的水热处理工艺相比,污泥经200 ℃、15%质量分数H2O2水热处理后,固相产物的含水率降低了10.40%,Pb和Cd的质量浓度分别增加了79.96和1.57 mg·kg−1;液相产物中VFAs和NH3-N质量浓度分别增加了773.68和370.00 mg·L−1。在添加的H2O2质量分数为5%时,重金属的无毒性形态占比最大,固相产物生态毒性最小;但当添加的H2O2质量分数大于5%时,重金属向潜在毒性形态转化增强,但仍低于原污泥中重金属的潜在毒性。本研究结果可为添加氧化剂强化水热处理城市污泥的应用提供参考。
  • 可挥发性有机化合物(volatile organic compounds, VOCs)是大气污染物中一大类[1-3]。浓度较高的VOCs气体会刺激人的眼睛、鼻子或咽喉等,导致干咳头晕、恶心疲劳等症状。长期生活在受VOCs污染的环境中,人体的神经系统会被损害,并诱发癌症,故VOCs的治理刻不容缓[4-6]

    传统VOCs处理技术主要有燃烧法、催化氧化法、吸收吸附法等。其中,燃烧法的操作较为简单,但因危险性较高,故对安全防护的要求较高;催化氧化法不需要额外试剂,且产生污染物较少,但同时存在催化剂稳定性和寿命等限制[7-8];吸收法可将VOCs回收再利用,但需根据待处理VOCs种类使用特定吸收剂,普适性较差;吸附法常用活性炭作为吸附剂,净化率高,但活性炭使用寿命很短,需频繁更换。

    低温等离子体(non-thermal plasma, NTP)技术是一种新型VOCs处理技术,相较于传统VOCs处理技术,具有适用性广、响应快速等特点,因而受到广泛关注[9-11]。在众多产生NTP的放电形式中,介质阻挡放电(dielectric barrier discharge, DBD)因其结构简单、可通过改变放电参数调控等离子体能量密度,且能处理较大流量气体等优势而被广泛研究。王保伟等[12]通过研究放电间距对单介质阻挡放电(single dielectric barrier discharge, SDBD) 等离子体降解甲苯的影响,发现随放电间距的增大,甲苯转化率和CO2选择性呈先增后降趋势。ZHAO等[13]使用双介质阻挡放电(double dielectric barrier discharge, DDBD)等离子体降解多种芳烃、烷烃、酮和酯类VOCs,发现电离能是影响所有VOCs降解效率的重要参数,电离能越大,降解效率越低。相较于SDBD放电腔,DDBD放电腔可很好地保护放电电极不受工作气体污染。

    为进一步优化NTP技术,提升VOCs转化率,并降低NTP降解VOCs过程中产生的臭氧与有机副产物产量,催化剂协同技术被越来越多应用于NTP降解VOCs的体系中[10-11, 14-17]。在众多研究中,对催化剂性能的表征大多使用单种VOCs进行。然而,实际情况下待处理的VOCs组分复杂,催化剂在多组分VOCs的处理中的表现还鲜有报道。

    本研究拟使用双介质阻挡放电(DDBD)反应器产生低温等离子体,以甲苯、丙酮及乙酸乙酯的混合气体作为待降解模拟VOCs混合废气[18-19],并制备常用于协同NTP降解VOCs的Mn2O3/γ-Al2O3催化剂,以研究NTP降解复杂成分VOCs的特性,以及催化剂对NTP降解混合VOCs的影响,以期为NTP降解VOCs的实际应用提供参考。

    实验装置及流程图如图1所示。模拟混合VOCs废气由高浓度丙酮、甲苯及乙酸乙酯标气经稀释得到。稀释标气所用气体为经过纯净空气发生器干燥后的压缩空气。使用4个质量流量控制器(mass flow controller, MFC)分别控制丙酮、甲苯、乙酸乙酯及压缩空气的流量,以得到实验所需的各VOCs组分的初始浓度。模拟混合VOCs经缓冲瓶混合后通入DDBD反应器降解,模拟VOCs的流速固定在1 L ∙ min−1。在VOCs单独降解实验中,甲苯、丙酮及乙酸乙酯的初始体积分数均为(33±2)×10−6。在混合VOCs降解实验中,甲苯、丙酮及乙酸乙酯的初始体积分数也均为(33±2)×10−6

    图 1  实验装置及流程图
    Figure 1.  Experimental flow chart

    DDBD反应器的2层介质分别为1根外径为20 mm,内径为17 mm的石英管(外管),以及1根外径为8 mm、内径为6 mm的石英管(内管)。内管中放置1根直径6 mm的铜棒作为高压电极,外管缠绕宽度为10 cm的铝箔作为接地电极。模拟混合VOCs经DDBD反应器进气口进入反应器内进行低温等离子体降解。经初步降解后的废气由反应器出气口进入催化剂反应管进行进一步反应。该催化剂反应管为内径5 mm、长度30 cm的石英管。

    降解前后的VOCs、CO和CO2体积分数均使用气相色谱仪(GC2060ⅢA,上海锐敏仪器有限公司)在线测定。其中,VOCs的体积分数使用配置有HT-5型毛细管柱(柱长30 m,内径0.32 mm)的火焰离子化检测器(flame ionization detector, FID)检测;CO和CO2的体积分数使用配有甲烷化转化炉的FID检测器检测。气相色谱仪的检测条件设定为:炉温60 ℃,检测器温度140 ℃,进样器温度120 ℃,甲烷转换炉320 ℃。反应过程中生成的臭氧体积分数使用臭氧检测仪(GT-2000-k3, Korno)测定。

    将一定量的Mn(NO3)2(AR,国药集团化学试剂有限公司)与2 g γ-Al2O3(球形,国药集团化学试剂有限公司)分散在含有分散剂聚乙烯吡咯烷酮(质量分数2%)(AR,国药集团化学试剂有限公司)、乙醇(质量分数12%)(AR,国药集团化学试剂有限公司)和去离子水的混合溶液中。其中,Mn(NO3)2的量取决于Mn元素与γ-Al2O3的质量比。将混合物超声分散1 h后转移进容积为100 mL的聚四氟乙烯瓶中,在140 ℃条件下放置6 h[20-21]。混合物冷却至室温后,用去离子水洗涤3次,并在60 ℃下干燥,最后在马弗炉中以500 ℃煅烧产物6 h以获得催化剂。

    VOCs废气的降解效果通常使用降解率与碳平衡进行表征。其中,VOCs的降解率(degradation rate, DR)由式(1)计算得到[22]

    DR=cincoutcin×100% (1)

    式中:cincout分别为降解前后各VOCs组分的体积分数,10−6

    VOCs降解后的碳平衡(carbon balance, CB)可通过式(2)计算得到。

    CB=nCO+nCO27×nT+4×nE+3×nA (2)

    式中:nCOnCO2分别为VOCs降解产生的CO与CO2的体积分数,10−6nTnE以及nA分别为被降解的甲苯、乙酸乙酯及丙酮的体积分数,10−6;数字7、4、3分别为甲苯、乙酸乙酯及丙酮分子中所含碳原子数。

    DDBD放电腔通过高压电源(CTP-2000K,南京苏曼电子有限公司)驱动放电,电源频率为10 kHz;放电腔两端的电压和电流分别通过高压探头( P6015A, Tektronix)及电流探头(5315, ETA)检测,并使用数字示波器记录(MDO3032, Tektronix)记录其放电波形。本课题组前期研究发现,调制脉冲电源可改善DDBD等离子体降解VOCs的能量效率。因此,在本实验中,电源通过一个矩形脉冲来调制一个中心频率为10 kHz 的正弦波形,并将高压电源的占空比和调制频率固定为20%与150 Hz。调制后的DDBD放电典型电流电压波形如图2所示。

    图 2  脉冲调制后DDBD放电典型电流电压波形图
    Figure 2.  Typical current and voltage waveform of modulated DDBD discharge

    反应器放电功率P可通过式(3)计算得到[23]

    P=fT0U(t)I(t)dt (3)

    式中:T为脉冲电源的脉冲宽度,s;f为调制脉冲频率,Hz; U(t)为高压探头测得的放电电压,V;I(t)为电流探针测得的放电电流,A。

    进而可通过式(4)计算得到低温等离子体降解VOCs过程中的特定输入能量(specific input energy,SIE)。SIE是低温等离子体降解VOCs效果评价的重要参数之一[24]

    SIE=PQ×60 (4)

    式中:Q为模拟VOCs废气的流速,L ∙ min−1

    催化剂的元素含量通过Prodigy ICP装置(利曼,美国)上的电感耦合等离子体(inductively coupled plasma, ICP)光电发射光谱进行测量。氮气吸附-脱附等温线在ASAP-2460分析仪上获得的。使用传统brunauer-emmett-teller(BET)和barrett-joyner-halenda(BJH)方程中的吸附数据确定催化剂的比表面积、孔径分布和孔体积;使用DD Max-2550PC型18 kW转靶X射线衍射仪(里加库,日本)记录催化剂粉末X射线衍射(X-ray diffraction, XRD)图;催化剂的X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)由Thermo Escalab 250Xi型X射线光电子能谱仪(ThermoFisher,美国)在Al-K(1486.6 eV,150 W)辐射下获得;通过扫描电镜(scanning electron microscope, SEM)(JEOL 7800 F,日本)研究催化剂的形态。使用高分辨率透射电镜(high resolution transmission electron microscope, HR-TEM)(FEI Tecnai G2F30,美国)测定了催化剂的结构和元素图。

    为分析催化剂的催化机理,使用密度泛函理论(density functional theory, DFT)模型计算了臭氧在Mn2O3晶体上的吸附过程。Mn2O3采用了最常见的(222)晶面,切面时,将其厚度设为1。单晶面包含43个单元,其中氧原子27个、锰原子16个。为避免表面间的原子相互作用,添加了2.4 nm的真空层。最终产生Mn2O3(222)晶面的模型,其晶格三维长度分别为a=1.330 77 nm, b=1.330 77 nm, c=2.50 nm,其3×3×1的超晶胞如图3所示。

    图 3  Mn2O3(222)晶面的3×3×1的超晶胞
    Figure 3.  3×3×1 supercell of Mn2O3 (222) crystal plane

    在DFT计算过程中,采用原子PAW_PBE泛函,布里渊区k值设定为k=2×2×1。每一步运算都通过VASP 5.4.1 for Linux软件进行结构优化计算。运算采用的超算服务器,CPU为Intel Xeon Platinum单节点96核。

    实验制备MnOx/γ-Al2O3的XRD如图4(a)所示。在2θ为23°、33°、38°和55°处出现了较强的衍射峰,这4个衍射峰可较好地对应Mn2O3晶体立方结构(PDF 002-0896)的(211)、(222)、(400)和(440)晶面。其中,2θ为33°和55°是Mn2O3的主峰。这表明Mn2O3在γ-Al2O3上具有良好的分散性[25]

    图 4  Mn2O3/γ-Al2O3催化剂的XRD光谱、Mn 2p XPS光谱和O 1s XPS光谱
    Figure 4.  (a) XRD spectrum, Mn 2p XPS spectrum and O 1s XPS spectrum of Mn2O3/γ-Al2O3 catalyst

    图4(b)为Mn2p的XPS图谱,其中2个分别位于641.7 eV和653.4 eV的主峰与文献中的Mn2O3所对应的峰值相匹配。对XPS图谱进行高斯拟合后,位于642.5 eV、641.5 eV和640.4 eV处的3个峰值分别对应于Mn4+、Mn3+和Mn2+。在643.8 eV处的最低峰值是卫星峰值,这是由于电荷从外层电子壳层转移到能量较高的空轨道所致。O1s的XPS图谱如图4(c)所示。位于530.7 eV处的峰可归因于晶格氧(O2-)与Mn的结合,而位于531.9 eV处的峰可归因于表面吸附氧(O2)。

    图5为Mn2O3/γ-Al2O3的SEM图像、TEM图像及选区电子衍射(selected area electron diffraction, SAED)图像。Mn2O3主要在γ-Al2O3表面以球形颗粒形式存在,且均匀分散在γ- Al2O3表面。Mn2O3的粒径约为10~100 nm。表面高度分散的Mn2O3晶体可促进催化过程中VOCs分子与催化剂间的接触。这可能会促进催化反应,最终促进VOCs的降解[26]。Mn2O3晶体呈立方结构与XRD结果一致。通过选区电子衍射分析获得Mn2O3的米勒指数为(211)、(222)、(400)和(440),与XRD分析中提到的一致。在图5(c)中截取的区域可观察到图3(b)中Mn2p的XPS光谱中2个主峰对应的2个晶面:(211)和(222)晶面,其晶面间距分别为0.386 nm和0.272 nm。

    图 5  Mn2O3/γ-Al2O3和Mn2O3纳米颗粒的电子显微镜图像
    Figure 5.  SEM image, TEM image and SAED image of Mn2O3/γ-Al2O3 catalyst

    各降解条件下VOCs降解率如图6所示。甲苯、丙酮和乙酸乙酯的降解率均随SIE上升而上升,这与已有研究的结果一致。这是由于3种VOCs的分子电离能和分子结构不同所决定的[13]。对比有无催化剂条件下VOC单独降解与混合气中VOCs降解的降解率(具体数值见表1),可发现混合气中甲苯的降解率相较甲苯单独降解时的降解率有明显提升。当SIE为700 J ∙ L−1时,甲苯单独降解时降解率为61%,而混合气中的甲苯降解率为84.7%,提升率为38.9%;而混合气中乙酸乙酯的降解率相较乙酸乙酯单独降解时的降解率也有所提升,同等SIE下提升率约为12.6%。不同的是,混合气中丙酮的降解率相较丙酮单独降解时的降解率发生了明显下降。在SIE为700 J ∙ L−1条件下,丙酮单独降解时降解率为50.1%,而混合气中丙酮降解率为31.1%,降低了37.9%。其原因可能是3种VOCs的分解产物之间存在协同效应。当等离子体中存在多种VOCs时,会比单种VOCs产生更多活性物种,如自由基等。这可能会更有效地促进VOCs分解,从而导致相对容易降解的甲苯和乙酸乙酯的降解率得到提升[27]。然而,如图7所示,除了丙酮本身较难降解外,其还是甲苯降解的有机副产物之一[28]。在混合气中,甲苯的降解率相比甲苯单独降解有了极大提升的同时,也导致其有机副产物中丙酮体积分数上升,最终导致混合气中丙酮降解率出现下降。

    表 1  在SIE为700 J ∙ L−1时,各VOCs的降解率及其提升率
    Table 1.  Degradation rate and improvement rate of VOCs at SIE of 700 J ∙ L−1
    指标甲苯乙酸乙酯丙酮
    单独混合单独混合单独混合
    无催化时的降解率61%84.7%59.6%67.1%50.1%31.1%
    有催化时的降解率72.6%91.1%70.2%79.1%58.4%45.3%
    提升率19%7.5%17.9%18%16.7%45.8%
     | Show Table
    DownLoad: CSV
    图 6  VOCs单独降解及在混合VOCs中降解时的降解率:
    Figure 6.  Degradation rates of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c) ethyl acetate
    图 7  甲苯单独降解的有机副产物
    Figure 7.  Organic by-products of toluene degradation alone

    随着Mn2O3/γ-Al2O3催化剂的引入,无论是单独或是混合状态,各VOCs的降解率均得以显著提升。当SIE为700 J ∙ L−1时,甲苯、乙酸乙酯及丙酮单独降解的降解率分别为61%、59.6%及50.1%;而在催化剂作用下,甲苯、乙酸乙酯以及丙酮单独降解的降解率分别提升至72.6%、70.2%及58.4%,此时催化剂对其降解率的提升量分别为19%、17.9%及16.7%。而在混合气中,同等SIE下甲苯、乙酸乙酯及丙酮的降解率分别为84.7%、67.1%及31.1%;在催化剂作用下,混合气中甲苯降解率被提升至91.1%,提升率约为7.5%;乙酸乙酯降解率被提升至79.2%,提升率约为18%;而丙酮的降解率被提升至45.3%,提升率为45.8%。此外,根据同等SIE下混合气中各VOCs的降解率可发现3种VOCs在混合气中的降解难度存在较大差距,甲苯、乙酸乙酯及丙酮的降解难度呈降序排列。这与前面单独降解的情况一致,表明混合和催化剂均不会改变VOCs的降解难易程度,从而说明电离能和分子结构是影响降解效率的重要因素。而Mn2O3/γ-Al2O3催化剂对混合气中甲苯、乙酸乙酯及丙酮降解率的提升效果随VOCs降解难度的上升而更加显著。

    甲苯、丙酮、乙酸乙酯单独降解,以及混合VOCs降解过程中的臭氧产量如图8所示。在各种条件下,VOCs降解过程中的臭氧产量均随SIE上升呈先升后降趋势。如式(5)~(6)所示,臭氧的形成可分为2部分:高能电子与氧分子发生非弹性碰撞,形成氧原子;氧原子和氧分子在第三体的参与下生成臭氧[29]

    图 8  VOCs单独降解及在混合VOCs中降解时的臭氧产量
    Figure 8.  Ozone production of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c) ethyl acetate
    e+O22O+e (5)
    O+O2+MO3+M (6)

    随着SIE上升,等离子体的电子密度和电子能量都随之增加,氧气分子与高能电子发生碰撞的几率随之上升,从而导致更多氧原子的产生,进而导致臭氧产量的上升。

    然而,随着SIE的进一步上升,反应器腔体的温度也随之升高。STANISLAV等[30]发现反应器腔体温度的上升会导致臭氧产量的降低。随着Mn2O3/γ-Al2O3催化剂的引入,各条件下臭氧产量均出现明显降低。MnOx催化剂对臭氧生成有明显抑制作用[31],在混合VOCs中,这一抑制作用同样表现出色,并未因待降解气体成分的改变而表现异常。同时,混合VOCs中的臭氧产量相较3种VOCs单独降解时均有微弱下降。混合VOCs中VOCs总浓度的上升,将使更多氧原子参与VOCs及其中间产物的降解,从而使参加与O2发应生成臭氧的氧原子减少,即臭氧浓度比单种VOC降解时更少[4]。另外,VOCs体积分数的上升也会导致降解中间产物的增多,部分臭氧在深度氧化这些中间产物的过程中被消耗。

    甲苯、丙酮、乙酸乙酯单独降解及混合VOCs降解的碳平衡情况如图9所示。随着SIE的上升,各条件下VOCs降解的碳平衡均呈上升趋势。此时,电场强度被增强,电子能量和密度也随之增强,进而提升了其与VOCs分子及VOCs分子降解中间产物碰撞的几率,从而导致碳平衡上升。此外,混合VOCs的碳平衡相较VOCs单独降解时的碳平衡均有一定程度下降。如,在SIE为700 J ∙ L−1时,甲苯单独降解的碳平衡为69.6%,丙酮单独降解的碳平衡为68.8%,乙酸乙酯单独降解的碳平衡为69.5%。而混合VOCs降解的碳平衡为67.1%,略有下降。相比VOCs单独降解,在混合VOCs中,由于VOCs体积分数的上升,部分等离子体放电产生的高能电子被用于甲苯、丙酮、乙酸乙酯分子的降解,被用于深度降解中间产物的高能电子数量则相应减少。最终导致混合VOCs降解的碳平衡较VOCs单独降解时有所降低。

    图 9  VOCs单独降解及在混合VOCs中降解时的碳平衡
    Figure 9.  Carbon balance of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c)ethyl acetate

    随着Mn2O3/γ-Al2O3催化剂的引入,各条件下VOCs降解的碳平衡均得以提升。臭氧在催化剂表面可分解为氧分子和具有强氧化性的氧原子。氧原子除了可降解等离子体阶段中未降解的一部分VOCs外,还可将等离子体降解VOCs的中间产物深度氧化为COx和H2O。最终导致催化剂引入后的碳平衡得以提升。

    计算结果表明,O3中的2个O—O键长分别为0.128 9 nm、0.128 8 nm,键角为:118.1°。与实验结果得到的0.127 8 nm、0.127 8 nm、116.8°相比,误差分别为0.84%、0.80%、1.13%。误差极小表明选取的计算参数进行结构优化后,得到的参数处于可接受范围。对Mn2O3催化剂吸附O3的情形进行DFT计算,从而对O—Mn原子连接的方式进行研究。首先将优化后的O3分子模型和Mn2O3(222)晶面模型进行合并,并将O3分子置于晶面中一个Mn原子的正上方(图10)。

    图 10  优化后的O3分子模型和Mn2O3(222)晶面模型
    Figure 10.  Optimized O3 molecular model and Mn2O3 (222) crystal plane model

    通过计算得到其吸附能为−16.64 eV。O3中的2个O原子分别吸附在了2个Mn原子上,其中O—Mn键的长度为0.192 2、0.215 0 nm。同时,3个O原子间的距离增加,分别为0.201 0 nm、0.194 4 nm。另一个O原子形成孤立离子形态,使其氧化性大大增强。在吸附的2个Mn原子附近Mn—O键分别从(0.185 9 nm、0.186 9 nm、0.187 0 nm)、(0.186 6 nm、0.193 0 nm、0.189 2 nm、0.211 0 nm)变为了(0.187 1 nm、0.196 9 nm、0.204 8 nm)、(0.194 5 nm、0.222 7 nm、0.202 8 nm、0.258 6 nm),其中1个O原子的距离为0.258 6 nm,可视为强氧化性的孤立氧原子。这也表明O3的吸附对Mn2O3晶面的表面结构产生了影响,吸附属于化学吸附。

    另外,本研究还计算了O3分子的马利肯电荷(Maliken charge),其吸附前后的电荷如表2所示。在O3吸附于Mn2O3晶面的过程中,3个原子分别获得1.03 e、1.14 e、1.09 e的电子。因此,为使电负性平衡,O原子将被作为电子供体,其氧化性大大增强。O3吸附于Mn2O3催化剂表面,对催化剂活性有很大影响。在反应过程中,O3吸附于Mn2O3的222切面中,通常是O原子与Mn原子进行相互连接,吸附于Mn原子表面,从而改变了原切面的结构,从而增强其催化作用。

    表 2  O3分子的马利肯电荷
    Table 2.  Maliken charge of O3 molecule
    原子种类吸附前/e吸附后/e
    O14.945.97
    O24.946.09
    O34.946.03
     | Show Table
    DownLoad: CSV

    1) 对比单种VOCs与混合VOCs降解的降解率,可发现混合VOCs中甲苯的降解率相较单纯甲苯降解时的降解率有明显提升。乙酸乙酯的降解率相较单纯乙酸乙酯降解时的降解率略有提升。而丙酮的降解率相较单纯丙酮降解时的降解率却发生了明显下降。

    2) VOCs降解过程中的臭氧产量均随SIE上升呈先升后降的趋势。同时,混合VOCs中的臭氧产量相较3种VOCs单独降解时均有微弱下降。Mn2O3/γ-Al2O3催化剂对于臭氧的生成有明显抑制作用。

    3) 混合VOCs降解相较单种VOCs降解时的碳平衡均有一定程度下降。Mn2O3/γ-Al2O3催化剂的引入使得各条件下VOCs降解的碳平衡均得以提升。

    4) Mn2O3/γ-Al2O3催化剂在协同低温等离子体降解多组分VOCs气体过程中,对混合VOCs中甲苯、乙酸乙酯及丙酮降解率的提升效果随VOCs种类降解难度的上升而更显著。

    5) 通过DFT计算了O3在Mn2O3催化剂表面的吸附。O3吸附于Mn2O3的222切面中,通常是O原子与Mn原子进行相互连接,吸附于Mn原子表面,从而改变了原切面结构,增强了其催化作用。

  • 图 1  FCF-1L型高压反应釜示意图

    Figure 1.  Schematic diagram of FCF-1L high-pressure reactor

    图 2  水热产物分布和固相产物的含水率

    Figure 2.  Distribution of the products during the hydrothermal treatment and the moisture content of the solid product

    图 3  水热固相产物中Pb和Cd的质量浓度

    Figure 3.  Mass concentration of Pb and Cd in the solid product from the sludge during the hydrothermal treatment

    图 4  水热液相产物中VFAs和NH3-N质量浓度

    Figure 4.  VFAs and NH3-N concentration of the liquid product from the sludge during the hydrothermal treatment

    图 5  水热液相产物pH

    Figure 5.  pH of the liquid product from the sludge during the hydrothermal treatment

    表 1  城市污泥的工业分析和元素分析

    Table 1.  Proximate and ultimate analyses of the municipal sludge %

    工业分析元素分析
    MAVFCCHNSO
    2.3845.8045.486.3424.633.302.971.0619.86
    工业分析元素分析
    MAVFCCHNSO
    2.3845.8045.486.3424.633.302.971.0619.86
    下载: 导出CSV

    表 2  城市污泥重金属分析

    Table 2.  Heavy metal analysis of the municipal sludge mg·kg−1

    PbNiMnZnCrCuCdAs
    134.568.8471.11 840.2167.21 260.13.122.9
    PbNiMnZnCrCuCdAs
    134.568.8471.11 840.2167.21 260.13.122.9
    下载: 导出CSV

    表 3  固相产物中重金属的赋存形态

    Table 3.  Chemical speciation of the heavy metals contained in the solid product

    元素样品重金属赋存形态占比/%
    F1+F2F3F4
    Pb原污泥0.4325.7673.81
    SR-00.113.0296.87
    SR-50.111.1098.79
    SR-100.2310.9488.83
    SR-150.2723.3676.37
    Cd原污泥023.4276.58
    SR-0014.1985.81
    SR-502.7697.24
    SR-10017.9182.09
    SR-15022.3777.63
    元素样品重金属赋存形态占比/%
    F1+F2F3F4
    Pb原污泥0.4325.7673.81
    SR-00.113.0296.87
    SR-50.111.1098.79
    SR-100.2310.9488.83
    SR-150.2723.3676.37
    Cd原污泥023.4276.58
    SR-0014.1985.81
    SR-502.7697.24
    SR-10017.9182.09
    SR-15022.3777.63
    下载: 导出CSV
  • [1] 陈冠益, 马文超, 颜蓓蓓, 等. 生物质废物资源综合利用技术[M]. 北京: 化学工业出版社, 2014: 325-326.
    [2] IZABELA S. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures[J]. Water Science and Technology, 2014, 70(10): 1617-1624. doi: 10.2166/wst.2014.417
    [3] 张鹏源, 韩永忠, 戴荣. 硫酸与H2O2快速联合调理对含铁剩余污泥脱水性能的改善[J]. 环境工程学报, 2017, 11(05): 3142-3147.
    [4] 王兴栋, 林景江, 李智伟, 等. 水热处理时间对污泥中氮磷钾及重金属迁移的影响[J]. 环境科学, 2016, 37(3): 1048-1054.
    [5] 庄修政, 黄艳琴, 阴秀丽, 等. 污泥水热处理制备清洁燃料的研究进展[J]. 化工进展, 2018, 37(1): 311-318.
    [6] ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245: 463-470. doi: 10.1016/j.biortech.2017.08.195
    [7] 张会文, 代晓炫, 姜伟, 等. 市政污泥的水热反应减量化及水分赋存形态研究[J]. 中国给水排水, 2021, 37(7): 96-100.
    [8] ABELLEIRA J. Advanced thermal hydrolysis of secondary sewage sludge: a novel process combining thermal hydrolysis and hydrogen peroxide addition[J]. Resources, Conservation and Recycling, 2012, 59: 52-57. doi: 10.1016/j.resconrec.2011.03.008
    [9] 唐嘉丽, 岳秀, 于广平, 等. 双氧水协同生化法处理实际印染废水[J]. 环境工程学报, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056
    [10] 汪日平, 王继鹏, 周正伟, 等. Fe3O4/石墨烯-H2O2预处理对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2017, 11(10): 5590-5596. doi: 10.12030/j.cjee.201612025
    [11] 宋宇佳, 武跃, 王晓川, 等. 热水解氧化法在含油污泥脱水及脱重金属方面的应用[J]. 辽宁化工, 2017, 46(4): 318-324.
    [12] KHALIL A S, SHANABLEH A, RIGBY P, et al. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making[J]. Journal of Environmental Management, 2005, 75(1): 53-64.
    [13] AZADEH Y, SAEID B, MOHAMMED M. F, et al Hydrothermal processing of cellulose: A comparison between oxidative and non-oxidative processes[J]. Bioresource Technology, 2017, 226: 229-237. doi: 10.1016/j.biortech.2016.12.010
    [14] PARTHASARATHI C, P. V. RAGHUNADH B, KRUSHNA V, et al Mercury speciation in coastal sediments from the central east coast of India by modified BCR method[J]. Marine Pollution Bulletin, 2014, 81(1): 282-288. doi: 10.1016/j.marpolbul.2013.12.054
    [15] 李佳璐, 姜霞, 王书航, 等. 丹江口水库沉积物重金属形态分布特征及其迁移能力[J]. 中国环境科学, 2016, 36(4): 1207-1217. doi: 10.3969/j.issn.1000-6923.2016.04.037
    [16] JOSÉ L. U, SERGIO C, PAULA O, et al Wet oxidation of the structural sludge fractions[J]. Journal of Cleaner Production, 2017, 168: 1163-1170. doi: 10.1016/j.jclepro.2017.09.033
    [17] 柯水洲, 李群一. 厌氧消化结合双氧水溶胞处理剩余污泥实验研究[J]. 环境工程, 2016, 34(7): 134-139.
    [18] 吴继阳, 郑凯琪, 杨婷婷, 等. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 2017, 11(10): 5757-5763. doi: 10.12030/j.cjee.201612044
    [19] LIU Z G, ZHANG F S, WU J Z. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2): 510-514. doi: 10.1016/j.fuel.2009.08.042
    [20] LIU Z G, ZHANG F S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267(1): 101-106. doi: 10.1016/j.desal.2010.09.013
    [21] AKSHAY J, RAJASEKHAR B, M.P. S Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications[J]. Chemical Engineering Journal, 2015, 273: 622-629. doi: 10.1016/j.cej.2015.03.111
    [22] 张涛. 生物质热解对重金属铅(Pb)和镉(Cd)的固定作用[D]. 绍兴: 绍兴文理学院, 2018.
    [23] XU X W, JIANG E C. Treatment of urban sludge by hydrothermal carbonization[J]. Bioresource Technology, 2017, 238: 182-187. doi: 10.1016/j.biortech.2017.03.174
    [24] ANNA C, BACON J. R, WILSON M. J, et al Forms of Cadmium, Lead, and Zinc in Contaminated Soils from Southwest Poland[J]. Journal of Environmental Quality, 1996, 25(1): 69-79.
    [25] CHRISTOPHER A. W, JOHN T. N Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment[J]. Water Research, 2009, 43(18): 4489-4498. doi: 10.1016/j.watres.2009.07.022
    [26] SHANABLEH A, JOMAA S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment[J]. Water science and technology, 2001, 44(10): 129-135. doi: 10.2166/wst.2001.0600
    [27] 严建华, 王飞, 池涌, 等. 污泥无害化能源化热处置新技术[M]. 北京: 中国电力出版社, 2016: 46-49.
    [28] 薛香玉. 污泥水热过程中产物随水热温度的变化特性研究[D]. 上海: 同济大学, 2014.
    [29] 王治军, 王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. doi: 10.3321/j.issn:0250-3301.2005.01.015
  • 加载中
图( 5) 表( 3)
计量
  • 文章访问数:  4050
  • HTML全文浏览数:  4050
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-14
  • 录用日期:  2021-09-03
  • 刊出日期:  2021-09-10
张培争, 张守玉, 张一帆, 胡南, 吴玉新. H2O2添加对城市污泥水热处理产物理化特性的影响[J]. 环境工程学报, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
引用本文: 张培争, 张守玉, 张一帆, 胡南, 吴玉新. H2O2添加对城市污泥水热处理产物理化特性的影响[J]. 环境工程学报, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
ZHANG Peizheng, ZHANG Shouyu, ZHANG Yifan, HU Nan, WU Yuxin. Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140
Citation: ZHANG Peizheng, ZHANG Shouyu, ZHANG Yifan, HU Nan, WU Yuxin. Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2999-3006. doi: 10.12030/j.cjee.202106140

H2O2添加对城市污泥水热处理产物理化特性的影响

    通讯作者: 张守玉(1971—),男,博士,教授。研究方向:生物质能清洁利用与污泥高效处理处置。E-mail:zhang-guo@163.com
    作者简介: 张培争(1995—),男,硕士研究生。研究方向:污泥资源化处理处置。E-mail:z19821222142@163.com
  • 1. 上海理工大学 能源与动力工程学院,上海 200093
  • 2. 上海市动力工程多相流动与传热重点实验室,上海 200093
  • 3. 同济大学 机械与能源工程学院,上海 200092
  • 4. 长春工程学院能源动力工程学院,吉林长春 130012
  • 5. 清华大学热能工程系,北京 100084
基金项目:
国家自然科学基金重点国际(地区)合作研究项目(51761125011);吉林省自然科学基金(YDZJ202101ZYTS180)

摘要: 针对城市污泥水热处理能耗高的问题,采用添加H2O2的方式实现在较低温度下强化水热处理效果,以达到降低能耗的效果。在高压反应釜内进行了城市污泥水热处理和水热联合H2O2处理实验,探讨了添加不同质量分数(5%、10%和15%)H2O2对处理后产物分布、固相产物含水率及其中重金属(Pb、Cd)质量浓度与赋存形态、液相产物pH及其中挥发性脂肪酸(Volatile Fatty Acids, VFAs)与氨氮(NH3-N)质量浓度的影响。结果表明,在水热温度为200 ℃、添加H2O2质量分数为15%时,污泥产物理化特性改善效果最佳。与单纯的水热处理工艺相比,污泥经200 ℃、15%质量分数H2O2水热处理后,固相产物的含水率降低了10.40%,Pb和Cd的质量浓度分别增加了79.96和1.57 mg·kg−1;液相产物中VFAs和NH3-N质量浓度分别增加了773.68和370.00 mg·L−1。在添加的H2O2质量分数为5%时,重金属的无毒性形态占比最大,固相产物生态毒性最小;但当添加的H2O2质量分数大于5%时,重金属向潜在毒性形态转化增强,但仍低于原污泥中重金属的潜在毒性。本研究结果可为添加氧化剂强化水热处理城市污泥的应用提供参考。

English Abstract

  • 近年来,我国城市污泥产量持续增加,预计至2021年,我国污泥的年产量将突破8 000×104 t,污泥处理处置形势十分严峻[1]。城市污泥含水率高且成分复杂,除了蛋白质、多糖和淀粉等主要组分,还含有大量的细菌、病原微生物和重金属等有毒有害物质,未经适当处理处置将对土壤环境和人群健康产生极大危害[2-3]。因此,亟需对城市污泥进行合理的处理处置。

    污泥的水热处理是指,在密闭环境中加热水产生高温高压饱和蒸汽,使污泥的絮体结构解散和有机物分解,并消灭细菌和病原微生物的过程[4-5]。因其具有污泥适用性广、处理高效等优点而在污泥处理处置中得到广泛应用[6-7]。ZHUANG等[6]对污泥进行300 ℃水热处理,经240 min处理后污泥中近80%的氮被去除。张会文等[7]对市政污泥在500 ℃水热处理了10 min后,市政污泥减量率达到87.6%,有机质去除率可达62.7%。但这些过程处理温度较高、能耗较大。为了降低污泥处理的能耗并强化水热处理效果,在水热处理基础上加入氧化剂是一种较新的污泥水热处理方向[8-10]。宋宇佳等[11]利用H2O2强化水热处理含油污泥,发现H2O2的添加能够促进水热过程中污泥的溶胞脱水,显著降低了处理后污泥残渣的含水率。有学者认为,添加H2O2对水热处理过程中有机物的转化分解产生重要影响。KHALIL等[12]发现,水热处理过程中无论是否加入H2O2,污泥中的有机物的分解都能够很快进行,氧化剂的加入有利于将溶解的有机物转化为非有机的最终产物。同样,YOUSEFIFAR等[13]通过生物质进行水热处理和水热联合H2O2处理,发现未添加氧化剂的水热处理过程中分解的有机物不能进一步转化为乙酸、CO2和H2O等。这些研究表明,H2O2能够强化水热过程中污泥的脱水和有机物的分解。然而,在污泥水热处理过程中,添加不同质量分数的H2O2对产物理化特性影响的研究较少,有必要对此进行系统的研究。

    本研究在水热温度200 ℃下,以城市污泥为原料,以质量分数为5%、10%和15%的H2O2强化水热处理,研究了添加不同质量分数H2O2对污泥水热产物分布、固相产物性质(含水率、重金属(Pb、Cd)质量浓度及其赋存形态)和液相产物性质(pH、挥发性脂肪酸(Volatile Fatty Acids, VFAs)、氨氮(NH3-N))的影响,以期为城市污泥的处理与处置提供参考。

  • 城市污泥取自上海市宝山区某污水处理厂,初始含水率为80%。污泥的工业分析及其元素分析和重金属分析结果分别见表1表2

  • 水热实验装置如图1所示,主要由反应器(上海恬恒FCF-1L,最大功率3 kW,最高温度400 ℃,内径25 cm)、加热装置、载气输送部分以及温控仪4部分组成。首先将10 g污泥、160 g去离子水和5 g不同质量分数的H2O2(5%、10%和15%)依次放入反应釜内,然后搅拌10 min充分混合。以10 ℃·min−1的速率升温到目标温度(200 ℃),在污泥水热处理期间通入100 mL·min−1的高纯氮气(99.999%)。水热实验完成后,向釜内冷却盘管通入冷却水冷却至室温,过滤斧内混合液得到固相产物和液相产物。固相产物经干燥、研磨和筛分(过100目筛)后放入密封袋中保存,按照添加H2O2的质量分数分别标记为SR-0、SR-5、SR-10和SR-15;液相产物移入棕色试剂瓶中低温保存并标记为LR-0、LR-5、LR-10和LR-15。

  • 根据质量守恒定律,污泥经水热处理后气、液、固三相产物的质量等于反应前混合溶液的总质量。因此,固相产率MS和液相产率ML的计算参考式(1)、式(2),气相产率MG的计算根据差减法参考式(3)。固相产物含水率M的计算参考式(4)。

    式中:Wms为污泥样品质量;WH2O为去离子水质量;WH2O2为H2O2溶液质量;W1W11分别为盛装固相产物前后的烧杯质量;W2W22分别为盛装液相产物前后的烧杯质量;W11′为装有固相产物烧杯干燥后的质量。以上变量单位均为g。

    采用电感耦合等离子体质谱仪(7700,美国安捷伦科技有限公司)测定固相产物中重金属的质量浓度;重金属的赋存形态采用欧共体标准物质局(Community Bureau of Reference, BCR)提出的三步连续分级提取法进行分析(简称BCR法)[14],根据BCR法可将重金属的赋存形态按照生态毒性分级为直接毒性形态(F1+F2)、潜在毒性形态(F3)和无毒性形态(F4),具体步骤参考文献[15]。采用气相色谱-质谱联用仪(7890A-5975C,美国安捷伦科技有限公司)测定液相产物中挥发性脂肪酸质量浓度;基于纳氏试剂比色法,采用双光束紫外可见光分光光度计(UV-6300,上海美谱达仪器有限公司)测定液相产物中氨氮质量浓度;采用酸度计(PHS-3,上海佑科仪表有限公司)测定原污泥和液相产物的pH。

  • 图2为添加不同质量分数的H2O2对水热处理污泥产物分布及固相产物含水率的影响。由图2可知,水热处理污泥的液相产物产率为85.72%,与之相比,H2O2强化水热处理污泥的液相产物产率随着H2O2质量分数的增大由85.72%升高至93.52%。相应地,固相产物产率由13.11%降低至5.04%,而气相产物产率变化不明显,仅由1.17%增加至1.44%。这表明,H2O2的添加能够促进水热处理污泥过程的进行。其原因是,H2O2具有氧化作用,能够促进先前在水热作用下污泥中初次分解破裂的有机大分子聚合物发生氧化还原反应,生成大量的小分子有机物和水等[5],导致固相产物产率减小,液相产物产率增大。

    同时,由图2可知,不同质量分数的H2O2对应的固相产物含水率差别较大,随着H2O2质量分数的增大,固相产物含水率呈现快速下降的趋势,这表明H2O2的添加能够强化污泥水热处理的脱水作用。这主要受到2个方面的影响。一方面,水热作用破坏了污泥内部的絮体结构,导致污泥中絮体颗粒粒径和颗粒间空隙减小,使得絮体结构更加紧实,絮体空隙间的自由水得以释放进入液相,从而提高了污泥的脱水性能[16]。另一方面,添加的H2O2具有较强的氧化溶胞作用,不仅氧化分解了污泥中的蛋白质、多糖和淀粉等固体颗粒;而且,溶解了污泥中微生物的细胞壁,造成细胞内结合水释放析出为自由水,导致污泥水热固相产物的含水率进一步降低[17]。添加H2O2对污泥水热脱水效果较好,在添加H2O2的质量分数为15%时,固相产物含水率降低至48.64%。

  • 1)不同质量分数H2O2对重金属质量浓度的影响。由表2可知,污泥中含有Pb、Ni、Zn、Cd等重金属,其中Pb和Cd对人体和环境的潜在危害较大[18]。因此,本研究分析了固相产物中Pb和Cd的质量浓度及其赋存形态的变化。图3为添加不同质量分数H2O2对污泥水热固相产物中Pb和Cd质量浓度的影响。由图3(a)和3(b)可知,SR-0中Pb和Cd的质量浓度较原污泥增加,SR-5、SR-10和SR-15中Pb和Cd的质量浓度较SR-0进一步增加,且随着添加的H2O2质量分数的增大,SR-5、SR-10和SR-15中Pb和Cd的质量浓度呈现缓慢增加的趋势。这表明,水热处理有利于污泥中重金属在固相产物中富集,H2O2的添加能够进一步强化水热过程中重金属在固相产物中富集的效果。LIU等[19-20]的研究表明,水热产生的含氧官能团(Oxygen-containing Functional Groups, OFGs) 对金属阳离子有很强的吸附作用。JAIN[21]等的研究表明,在水热过程中添加H2O2能够促进OFGs的产生。因此,H2O2的添加进一步强化了水热固相产物对Pb和Cd的吸附能力。此外,根据2.1节所述,固相产物产率随着H2O2质量分数的增大而减小。因此,Pb和Cd的浓缩程度增大,两者质量浓度亦应有所增加。

    2)不同质量分数H2O2对重金属赋存形态的影响。为了进一步研究不同质量分数的H2O2对重金属生态毒性的影响,测定了原污泥及其水热处理后固相产物中Pb和Cd的赋存形态,结果如表3所示。由表3可知,SR-0、SR-5、SR-10和SR-15中Pb和Cd的无毒性形态(F4)占比较原污泥更高,直接毒性形态(F1+F2)和潜在毒性形态(F3)占比较原污泥更低,表明水热处理和添加H2O2强化水热处理均利于Pb和Cd由直接毒性形态和潜在毒性形态向无毒性形态转化,这对污泥中重金属的钝化起积极作用。其原因为,水热作用导致了污泥中表面官能团的先分解后缩聚,而缩聚过程产生的较稳定和高浓缩的芳香化结构易吸附于水热固相产物,并能够络合固相产物表面和内部结构中的游离重金属,从而使Pb和Cd的毒性形态和潜在毒性形态更多的转换为相对稳定的无毒性形态[22]。同时,在添加的H2O2质量分数为5%时,Pb和Cd的无毒性形态占比进一步增大,此时,固相产物的重金属生态毒性较弱。这是因为,H2O2促进了污泥水热过程中大量OFGs的产生,导致缩聚反应更为剧烈,产生更多芳香化结构来络合游离的Pb和Cd[19]

    此外,对比SR-5、SR-10和SR-15中Pb和Cd无毒性形态与潜在毒性形态所占比例的变化,发现随着添加的H2O2质量分数的增大,Pb和Cd逐渐由无毒性形态迁移转化为潜在毒性形态,使固相产物的潜在生态毒性增强,但仍低于污泥原样的生态毒性。其原因可能是,在H2O2强化水热处理污泥过程中,水热作用和H2O2氧化作用产生协同效应,使污泥中的大分子有机物发生降解、分子有机物溶解,从而形成新的有机物和配位键。这些新产物能够诱导金属离子与其结合形成螯合物或复杂的沉淀物,使Pb和Cd的迁移性增强,从而有助于其由无毒性形态迁移转化为潜在毒性形态[23]。此外,由于污泥中Cd自身的可移动性较强,易吸附沉降于固相产物表面进而转化为潜在生态毒性部分,或与某些盐类结合形成无毒性部分[24]。因此,Cd的直接毒性形态占比为0。

  • 污泥中有机物的热水解产物主要为VFAs和NH3-N,因此,VFAs和NH3-N质量浓度能够在一定程度上反眏污泥中有机物的水解程度[25]图4为添加不同质量分数H2O2对污泥水热液相产物中VFAs和NH3-N质量浓度的影响。由图4可知,水热液相产物LR-0中VFAs质量浓度为2 163.78 mg·L−1,与之相比,LR-5、LR-10和LR-15中VFAs质量浓度增加了10.11%~35.76%;LR-0中NH3-N质量浓度为1 080.24 mg·L−1,与之相比,LR-5、LR-10和LR-15中NH3-N质量浓度增加了14.31%~34.25%。这表明,H2O2能够强化污泥水热过程中有机物的水解,且添加的H2O2质量分数越大,有机物的水解程度越大。

    由于污泥所含微生物细胞外的聚合有机物较细胞内的有机物更易分解[11],因此,在H2O2强化水热处理污泥的初始阶段,水热作用先分解了胞外聚合有机物中的易降解颗粒并转化生成部分VFAs。随着处理过程的进行,易降解颗粒有机物被水解完全,水热作用开始分解消耗胞外聚合有机物中的难降解颗粒物,使液相产物中VFAs质量浓度持续增加。与此同时,H2O2的强氧化溶胞作用破坏了污泥中微生物的细胞壁,使细胞内有机物释放析出,其中部分有机物以氨氮形式存在,部分有机物在水热作用下发生分解并产生大量的含氮类化合物,从而导致液相产物中NH3-N质量浓度增大[26]。但是,在H2O2质量分数由5%增大至10%阶段,NH3-N质量浓度增大趋势较缓。这可能是因为,有机物水解产生的羰基化合物和氨基化合物(氨基酸和蛋白质)发生Maillard反应生成复杂含氮杂环化合物,而不以氨氮形式存在[27]

  • 图5为添加不同质量分数H2O2对污泥水热液相产物pH的影响。由图5可知,原污泥的pH为6,呈弱酸性,经水热处理后液相产物pH为4.95,酸性增强;经不同质量分数H2O2强化水热处理后,液相产物pH由4.95升高至5.19,酸性相对减弱,这表明H2O2的添加有利于污泥水热液相产物酸性的减弱。结合图4分析,这主要由水热处理污泥生成的有机酸和氨氮互相作用决定[28]。一方面,水热作用促进了污泥中脂类有机物水解生成甘油和脂肪酸,蛋白质水解为肽类、简单有机酸、CO2和氨等[29]。其中,简单有机酸和CO2易溶于液相而增强液相产物的酸性,氨易溶于液相而增强液相产物的碱性,但简单有机酸和CO2产生更多。因此,其酸性作用强于氨氮的碱性作用,液相产物总体显酸性。另一方面,H2O2的添加强化了污泥水热处理过程中生成的简单有机酸部分氧化分解,导致氨氮溶于液相的碱性作用相对增强,液相产物酸性有所减弱,且添加的H2O2质量分数越大,简单有机酸氧化分解更多,液相产物的pH不断升高、酸性逐渐减弱。

  • 1)对于水热处理污泥,添加H2O2能明显提高水热固相产物的脱水性能,固相产物含水率随添加H2O2质量分数的增大而降低。在水热温度为200 ℃、H2O2质量分数为15%时,固相产物含水率能降低至48.64%。

    2)添加H2O2有利于水热处理污泥过程中Pb和Cd的富集和钝化。相比水热处理污泥,H2O2强化水热处理污泥的固相产物中Pb和Cd的质量浓度较大、生态毒性较小。

    3)H2O2的添加强化了水热处理污泥过程中有机物的分解,水热液相产物中VFAs和NH3-N质量浓度较大,同时使液相产物的pH升高,酸性得到减弱。

参考文献 (29)

返回顶部

目录

/

返回文章
返回