-
近年来,我国城市污泥产量持续增加,预计至2021年,我国污泥的年产量将突破8 000×104 t,污泥处理处置形势十分严峻[1]。城市污泥含水率高且成分复杂,除了蛋白质、多糖和淀粉等主要组分,还含有大量的细菌、病原微生物和重金属等有毒有害物质,未经适当处理处置将对土壤环境和人群健康产生极大危害[2-3]。因此,亟需对城市污泥进行合理的处理处置。
污泥的水热处理是指,在密闭环境中加热水产生高温高压饱和蒸汽,使污泥的絮体结构解散和有机物分解,并消灭细菌和病原微生物的过程[4-5]。因其具有污泥适用性广、处理高效等优点而在污泥处理处置中得到广泛应用[6-7]。ZHUANG等[6]对污泥进行300 ℃水热处理,经240 min处理后污泥中近80%的氮被去除。张会文等[7]对市政污泥在500 ℃水热处理了10 min后,市政污泥减量率达到87.6%,有机质去除率可达62.7%。但这些过程处理温度较高、能耗较大。为了降低污泥处理的能耗并强化水热处理效果,在水热处理基础上加入氧化剂是一种较新的污泥水热处理方向[8-10]。宋宇佳等[11]利用H2O2强化水热处理含油污泥,发现H2O2的添加能够促进水热过程中污泥的溶胞脱水,显著降低了处理后污泥残渣的含水率。有学者认为,添加H2O2对水热处理过程中有机物的转化分解产生重要影响。KHALIL等[12]发现,水热处理过程中无论是否加入H2O2,污泥中的有机物的分解都能够很快进行,氧化剂的加入有利于将溶解的有机物转化为非有机的最终产物。同样,YOUSEFIFAR等[13]通过生物质进行水热处理和水热联合H2O2处理,发现未添加氧化剂的水热处理过程中分解的有机物不能进一步转化为乙酸、CO2和H2O等。这些研究表明,H2O2能够强化水热过程中污泥的脱水和有机物的分解。然而,在污泥水热处理过程中,添加不同质量分数的H2O2对产物理化特性影响的研究较少,有必要对此进行系统的研究。
本研究在水热温度200 ℃下,以城市污泥为原料,以质量分数为5%、10%和15%的H2O2强化水热处理,研究了添加不同质量分数H2O2对污泥水热产物分布、固相产物性质(含水率、重金属(Pb、Cd)质量浓度及其赋存形态)和液相产物性质(pH、挥发性脂肪酸(Volatile Fatty Acids, VFAs)、氨氮(NH3-N))的影响,以期为城市污泥的处理与处置提供参考。
H2O2添加对城市污泥水热处理产物理化特性的影响
Effects of H2O2 addition on the physicochemical properties of the hydrothermal products from municipal sludge
-
摘要: 针对城市污泥水热处理能耗高的问题,采用添加H2O2的方式实现在较低温度下强化水热处理效果,以达到降低能耗的效果。在高压反应釜内进行了城市污泥水热处理和水热联合H2O2处理实验,探讨了添加不同质量分数(5%、10%和15%)H2O2对处理后产物分布、固相产物含水率及其中重金属(Pb、Cd)质量浓度与赋存形态、液相产物pH及其中挥发性脂肪酸(Volatile Fatty Acids, VFAs)与氨氮(NH3-N)质量浓度的影响。结果表明,在水热温度为200 ℃、添加H2O2质量分数为15%时,污泥产物理化特性改善效果最佳。与单纯的水热处理工艺相比,污泥经200 ℃、15%质量分数H2O2水热处理后,固相产物的含水率降低了10.40%,Pb和Cd的质量浓度分别增加了79.96和1.57 mg·kg−1;液相产物中VFAs和NH3-N质量浓度分别增加了773.68和370.00 mg·L−1。在添加的H2O2质量分数为5%时,重金属的无毒性形态占比最大,固相产物生态毒性最小;但当添加的H2O2质量分数大于5%时,重金属向潜在毒性形态转化增强,但仍低于原污泥中重金属的潜在毒性。本研究结果可为添加氧化剂强化水热处理城市污泥的应用提供参考。Abstract: Aiming at the disadvantage of high energy consumption of municipal sludge treated by hydrothermal treatment, H2O2 addition was conducted to strengthen the hydrothermal treatment process of municipal sludge at low temperature in order to decrease the energy consumption. The experiments of hydrothermal treatment without and with H2O2 addition of municipal sludge were carried out in a high-pressure reactor to study the effects of H2O2 mass fraction (5%, 10% and 15%) on the distribution of the resulted products, the properties of the solid product including water content, the mass concentration and chemical speciation of the heavy metals (Pb and Cd), and the properties of the liquid product including pH value and Volatile Fatty Acids (VFAs), ammonia nitrogen (NH3-N). The results showed that the hydrothermal treatment with H2O2 mass fraction of 15% addition at 200 ℃ resulted in the optimum physicochemical properties of the resulted products from the municipal sludge. Compared with the hydrothermal treatment of the sludge, after the hydrothermal treatment with H2O2 mass fraction of 15% at 200 ℃, the moisture content of the solid product was reduced by 10.40% and Pb and Cd mass concentration increased by 79.96 and 1.57 mg·kg−1, respectively, meanwhile, the concentration of VFAs and NH3-N in the liquid product increased by 773.68 and 370.00 mg·L−1, respectively. The proportion of the non-toxic heavy metals contained in the solid product from the sludge hydrothermal treated with H2O2 mass fraction of 5% addition was the highest and its ecotoxicity was the smallest. When H2O2 mass fraction increased above 5%, the conversion of the heavy metals contained in the solid product to potentially toxic forms was enhanced, but the potential toxicity of the heavy metals contained in the resulted solid product was still lower than that the raw sludge. The research can provide reference for the application of adding oxidant to promote the hydrothermal treatment of municipal sludge to some extent.
-
表 1 城市污泥的工业分析和元素分析
Table 1. Proximate and ultimate analyses of the municipal sludge
% 工业分析 元素分析 M A V FC C H N S O 2.38 45.80 45.48 6.34 24.63 3.30 2.97 1.06 19.86 表 2 城市污泥重金属分析
Table 2. Heavy metal analysis of the municipal sludge
mg·kg−1 Pb Ni Mn Zn Cr Cu Cd As 134.5 68.8 471.1 1 840.2 167.2 1 260.1 3.1 22.9 表 3 固相产物中重金属的赋存形态
Table 3. Chemical speciation of the heavy metals contained in the solid product
元素 样品 重金属赋存形态占比/% F1+F2 F3 F4 Pb 原污泥 0.43 25.76 73.81 SR-0 0.11 3.02 96.87 SR-5 0.11 1.10 98.79 SR-10 0.23 10.94 88.83 SR-15 0.27 23.36 76.37 Cd 原污泥 0 23.42 76.58 SR-0 0 14.19 85.81 SR-5 0 2.76 97.24 SR-10 0 17.91 82.09 SR-15 0 22.37 77.63 -
[1] 陈冠益, 马文超, 颜蓓蓓, 等. 生物质废物资源综合利用技术[M]. 北京: 化学工业出版社, 2014: 325-326. [2] IZABELA S. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures[J]. Water Science and Technology, 2014, 70(10): 1617-1624. doi: 10.2166/wst.2014.417 [3] 张鹏源, 韩永忠, 戴荣. 硫酸与H2O2快速联合调理对含铁剩余污泥脱水性能的改善[J]. 环境工程学报, 2017, 11(05): 3142-3147. [4] 王兴栋, 林景江, 李智伟, 等. 水热处理时间对污泥中氮磷钾及重金属迁移的影响[J]. 环境科学, 2016, 37(3): 1048-1054. [5] 庄修政, 黄艳琴, 阴秀丽, 等. 污泥水热处理制备清洁燃料的研究进展[J]. 化工进展, 2018, 37(1): 311-318. [6] ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245: 463-470. doi: 10.1016/j.biortech.2017.08.195 [7] 张会文, 代晓炫, 姜伟, 等. 市政污泥的水热反应减量化及水分赋存形态研究[J]. 中国给水排水, 2021, 37(7): 96-100. [8] ABELLEIRA J. Advanced thermal hydrolysis of secondary sewage sludge: a novel process combining thermal hydrolysis and hydrogen peroxide addition[J]. Resources, Conservation and Recycling, 2012, 59: 52-57. doi: 10.1016/j.resconrec.2011.03.008 [9] 唐嘉丽, 岳秀, 于广平, 等. 双氧水协同生化法处理实际印染废水[J]. 环境工程学报, 2018, 12(7): 1942-1950. doi: 10.12030/j.cjee.201712056 [10] 汪日平, 王继鹏, 周正伟, 等. Fe3O4/石墨烯-H2O2预处理对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2017, 11(10): 5590-5596. doi: 10.12030/j.cjee.201612025 [11] 宋宇佳, 武跃, 王晓川, 等. 热水解氧化法在含油污泥脱水及脱重金属方面的应用[J]. 辽宁化工, 2017, 46(4): 318-324. [12] KHALIL A S, SHANABLEH A, RIGBY P, et al. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making[J]. Journal of Environmental Management, 2005, 75(1): 53-64. [13] AZADEH Y, SAEID B, MOHAMMED M. F, et al Hydrothermal processing of cellulose: A comparison between oxidative and non-oxidative processes[J]. Bioresource Technology, 2017, 226: 229-237. doi: 10.1016/j.biortech.2016.12.010 [14] PARTHASARATHI C, P. V. RAGHUNADH B, KRUSHNA V, et al Mercury speciation in coastal sediments from the central east coast of India by modified BCR method[J]. Marine Pollution Bulletin, 2014, 81(1): 282-288. doi: 10.1016/j.marpolbul.2013.12.054 [15] 李佳璐, 姜霞, 王书航, 等. 丹江口水库沉积物重金属形态分布特征及其迁移能力[J]. 中国环境科学, 2016, 36(4): 1207-1217. doi: 10.3969/j.issn.1000-6923.2016.04.037 [16] JOSÉ L. U, SERGIO C, PAULA O, et al Wet oxidation of the structural sludge fractions[J]. Journal of Cleaner Production, 2017, 168: 1163-1170. doi: 10.1016/j.jclepro.2017.09.033 [17] 柯水洲, 李群一. 厌氧消化结合双氧水溶胞处理剩余污泥实验研究[J]. 环境工程, 2016, 34(7): 134-139. [18] 吴继阳, 郑凯琪, 杨婷婷, 等. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 2017, 11(10): 5757-5763. doi: 10.12030/j.cjee.201612044 [19] LIU Z G, ZHANG F S, WU J Z. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2): 510-514. doi: 10.1016/j.fuel.2009.08.042 [20] LIU Z G, ZHANG F S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267(1): 101-106. doi: 10.1016/j.desal.2010.09.013 [21] AKSHAY J, RAJASEKHAR B, M.P. S Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications[J]. Chemical Engineering Journal, 2015, 273: 622-629. doi: 10.1016/j.cej.2015.03.111 [22] 张涛. 生物质热解对重金属铅(Pb)和镉(Cd)的固定作用[D]. 绍兴: 绍兴文理学院, 2018. [23] XU X W, JIANG E C. Treatment of urban sludge by hydrothermal carbonization[J]. Bioresource Technology, 2017, 238: 182-187. doi: 10.1016/j.biortech.2017.03.174 [24] ANNA C, BACON J. R, WILSON M. J, et al Forms of Cadmium, Lead, and Zinc in Contaminated Soils from Southwest Poland[J]. Journal of Environmental Quality, 1996, 25(1): 69-79. [25] CHRISTOPHER A. W, JOHN T. N Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment[J]. Water Research, 2009, 43(18): 4489-4498. doi: 10.1016/j.watres.2009.07.022 [26] SHANABLEH A, JOMAA S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment[J]. Water science and technology, 2001, 44(10): 129-135. doi: 10.2166/wst.2001.0600 [27] 严建华, 王飞, 池涌, 等. 污泥无害化能源化热处置新技术[M]. 北京: 中国电力出版社, 2016: 46-49. [28] 薛香玉. 污泥水热过程中产物随水热温度的变化特性研究[D]. 上海: 同济大学, 2014. [29] 王治军, 王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. doi: 10.3321/j.issn:0250-3301.2005.01.015