-
近年来,我国的垃圾产生量逐年增多[1]。根据生态环境部2016年及2020年的《全国大、中城市固体废物污染环境防治年报》,我国246个大、中城市生活垃圾产量从2015年的18 564.0×104 t增长到2019年的23 560.2×104 t,短短4年增长了27%左右,且处于不断增长的趋势中[2-3]。其中,餐厨垃圾占比最大,约占城市生活垃圾的30%~40%[4]。同时,随着垃圾分类的推进,各省市进一步加大了湿垃圾分类处理的力度,致使原本混在生活垃圾中的厨余垃圾也被分出,从而造成有机易腐垃圾处置量的明显增加。
餐厨垃圾有机质含量高、产量大、产地分散,且极易腐败发酸发臭、滋生有害生物;若在收集转运过程中发生泄漏则会污染空气、土壤及水源,最终会严重干扰人群的正常生活,具有污染属性[5]。同时,餐厨垃圾可用于生产有机酸类、醇类、脂肪酸酯类产品[6],因而具有一定的资源属性[7]。
常见餐厨垃圾资源化技术包括好氧堆肥和厌氧消化等[8]。对于大规模厌氧消化工艺来说,其资源化衍生品主要为油脂、沼气、沼液和沼渣。油脂分离后可加工为工业油,沼气可作为能源利用,而沼液可经过生化及物化深度处理后达标排放,三者处理处置与资源化工艺均已成熟[9-10]。然而,沼渣处理处置与资源化已成为目前面临的主要问题。按照湿垃圾处理工艺模式,每100 t湿垃圾经厌氧消化处理后,将产生20~30 t含水率60%~70%的沼渣。沼渣中含有丰富的磷、钾、镁等营养元素,以及一定量未充分降解的有机物,可作为堆肥原料进行腐殖化[11],其产品可作为肥料应用于园林绿化和农作物用肥。目前,沼渣的堆肥研究包括不同原料和添加物对堆肥效果的影响、堆肥过程中的理化性质变化、堆肥工艺优化等[12],这些研究大多数为小试,与实际工程工况有一定出入。另一方面,餐厨垃圾好氧堆肥也主要集中在分散小型生化处理机,其工艺原理是将菌剂掺进垃圾中,搅拌使分解垃圾的细菌活化,数小时后有机质被分解为水和二氧化碳,以及一次发酵产品。由于分散小型生化机处理时间短,其产品腐熟度不高,致使可能存在的病原微生物无法彻底杀灭,如果直接施用于土壤可能会导致植被烧苗或生蛀虫[13]。
为提升餐厨垃圾资源化衍生品再利用效率,本研究以餐厨垃圾资源化衍生品沼渣(Biogas residue, BR)及生化机出料(Composting products from biochemical machine, CPBM)为堆肥原料,以菌菇渣作为辅料,进行5 t堆肥量级的中试实验。通过分析衍生物在实际工程规模好氧堆肥过程中理化性质及腐熟度等指标的变化,以评价堆肥产品作为绿化种植土及有机肥料的可行性。本研究成果可为餐厨垃圾及湿垃圾衍生品深度腐熟、高效资源化提供参考。
餐厨垃圾资源化衍生品的堆肥中试实验
Pilot plant test of composting for food waste resource derivatives
-
摘要: 为解决餐厨垃圾资源化厌氧消化沼渣(Biogas residue, BR)和生化机出料(Composting products from biochemical machine, CPBM)等餐厨垃圾资源化衍生品未得到有效利用的问题,采用条垛式露天堆肥技术,开展了5 t规模的堆肥中试实验。将2种原料与菌菇渣1∶1混合,每3 d进行1次翻堆,每隔3 d取样1次,对堆体温度、含水率、pH、有机质含量、重金属含量等指标进行了检测。结果表明,经过30 d堆肥后,BR与CPBM堆肥体系含水率与有机质均有下降;在堆肥过程中,CPBM体系种子发芽率呈先下降后上升趋势,最终种子发芽指数增加了184.7%;而BR体系的种子发芽率则稳定在60%~85%,种子发芽指数(Germination index, GI)大于50%,达到基本无毒性要求。相关性分析表明,腐殖化指数与堆肥时间不具有显著相关性(P>0.05),这说明单一腐殖化指数不能反映出餐厨垃圾资源化衍生品的堆肥腐熟度。经过50 d的堆肥,CPBM堆肥产品各指标均达到《有机肥料(NY 525-2012)》标准要求,可作为有机肥料使用;而BR体系由于堆肥初期含水率较高,导致最终产品含水率高于30%,但可通过含水率调节和延长堆肥时间以满足标准要求。本研究结果可为餐厨垃圾及其衍生物的工程化好氧堆肥提供参考。Abstract: Food waste derivatives, mainly includes biogas residue (BR) and composting products from biochemical machine (CPBM), are not been utilized effectively. In this study, the organic fertilizer produced from BR and CPBM was investigated based on the strip pile composting system with the scale of 5 t. Wherein, two kinds of raw material were mixed with mushroom residue with the ratio of 1∶1. The composting system was turned every three days, and the samples were taken every four days. The temperature, moisture content, pH, organic matter content and heavy metal content of compost product were detected for the performance evaluation. Results shows that both of the BR and CPBM composting systems have a decrease of moisture and organic matter. What’s more, the germination rate of CPBM system decreases first and then increases, and the germination index (GI) increases by 184.7% after composting. Different from CPBM system, the germination rate of BR system is stable between 60% and 85%, and the GI is over 50%, reaching the requirement of no toxicity. The correlation analysis shows that the humification index has no significant correlation with composting time (P>0.05), indicating that the single humification index cannot reflect the maturity of the products. After the composting time of 50 days, the indexes of CPBM composting product meet the standard of organic fertilizer (NY 525-2012), and can be used as organic fertilizer. However, the BR composting product can meet the standard on the basis of water content regulation and the composting time extension. All the results can provide a reference for the engineering composting of food waste and its derivatives.
-
表 1 堆肥初始物料的基本性质
Table 1. Basic properties of the raw compost materials
供试物料 含水率/% 有机质质量分数/(g·kg−1) 有机碳与总氮比值 腐殖化指数 种子发芽指数/% BR 60.45 460.3 10.23 1.34 25.10 CPBM 17.80 808.8 29.69 0.27 17.34 菌菇渣 55.27 861.1 31.83 0.34 1.89 表 2 餐厨垃圾衍生物堆肥前后性能变化及与有机肥标准对比
Table 2. Characteristics variation of food waste derivative before and after composting and its comparison with organic fertilizer standards
对比项 有机质
质量分
数/%氮/
%磷/
%钾/
%总养分
质量分
数/%含水
率/%pH 重金属质量
分数/(mg·kg−1)蛔虫卵
死亡率/
%粪大肠
菌群数/
(个·g−1)含油
率/%含盐
率/%As Hg Pb Cd Cr 标准限值[18] ≥45 − − − ≥5.0 ≤30 5.5~8.5 ≤15 ≤2 ≤50 ≤3 ≤150 ≥95 ≤100 − − CPBM堆肥前 78.72 3.150 2.073 0.132 5.355 33.64 6.63 1.03 0.56 9.58 1.22 50.37 100 29 8.34 5.8 CPBM堆肥后 69.94 2.941 2.201 1.176 6.318 23.40 8.41 1.15 0.31 9.14 1.42 59.22 100 3 5.58 3.2 BR堆肥前 46.61 3.442 2.662 0.567 6.671 57.16 6.59 2.1 0.46 10.5 0.61 37.27 100 37 2.25 2.5 BR堆肥后 43.89 2.173 3.614 1.597 7.384 43.04 8.41 3.5 0.22 9.76 0.84 43.74 100 3 0.264 1.3 -
[1] ZHANG D Q, TAN S K, GERSBERG R M. Municipal solid waste management in China: Status, problems and challenges[J]. Journal of Environmental Management, 2010, 91(8): 1623-33. doi: 10.1016/j.jenvman.2010.03.012 [2] 《2016年全国大、中城市固体废物污染环境防治年报》[J]. 中国资源综合利用, 2016, 34(11): 14-20. [3] 再协. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39(01): 4. [4] 王晓君, 温文霞, 潘松青, 等. 辅料比例对餐厨垃圾好氧堆肥及微生物特性的影响[J]. 环境工程学报, 2016, 10(06): 3215-3222. [5] 胡新军, 张敏, 余俊锋, 等. 中国餐厨垃圾处理的现状、问题和对策[J]. 生态学报, 2012, 32(14): 4575-84. [6] LIN C S K, PFALTZGRAFF L A, HERRERO-DAVILA L, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective[J]. Energy & Environmental Science, 2013, 6(2): 426-464. [7] 李小建, 周振鹏, 谢锡龙, 等. 餐厨垃圾连续堆肥处理系统中试研究[J]. 环境工程学报, 2013, 7(01): 340-344. [8] 张虹, 李蕾, 彭韵, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J]. 中国环境科学, 2020, 40(08): 3465-3474. doi: 10.3969/j.issn.1000-6923.2020.08.026 [9] MAO C, FENG Y, WANG X, et al. Review on research achievements of biogas from anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 540-555. [10] WEILAND P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860. doi: 10.1007/s00253-009-2246-7 [11] MOELLER K, MUELLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review[J]. Engineering in Life Sciences, 2012, 12(3): 242-57. doi: 10.1002/elsc.201100085 [12] 屈安安, 郑鑫, 王阳, 等. 基于文献计量的沼渣沼液处理利用技术研究态势分析[J]. 中国沼气, 2020, 38(06): 86-94. doi: 10.3969/j.issn.1000-1166.2020.06.014 [13] 石磊, 赵由才, 李兵. 小型有机垃圾生化处理机的开发与应用进展[J]. 中国沼气, 2004(03): 15-8. doi: 10.3969/j.issn.1000-1166.2004.03.004 [14] 窦金熙, 郭玉明, 王盛, 等. 土壤含水率测定方法研究[J]. 山西农业科学, 2017, 45(03): 482-5. doi: 10.3969/j.issn.1002-2481.2017.03.39 [15] 陈富伟, 李伟. 土壤酸碱度、含水量和有机质测量方法对比[J]. 云南化工, 2020, 47(08): 4-6. [16] 中国林业科学研究院林业研究所森林土壤研究室. 森林土壤腐殖质组成的测定[M]. 行业标准-林业. 1999: 4P.;A. [17] 中国林业科学研究院林业研究所森林土壤研究室. 森林土壤有机质的测定及碳氮比的计算[M]. 行业标准-林业. 1999: 4P.;A. [18] 宋继文. 浅议NY525—2012《有机肥料》代替NY525—2011《有机肥料》[J]. 磷肥与复肥, 2012, 27(06): 91. doi: 10.3969/j.issn.1007-6220.2012.06.038 [19] 周宝宣, 袁琦. 土壤重金属检测技术研究现状及发展趋势[J]. 应用化工, 2015, 44(01): 131-8+45. [20] LI Z, HUANG G, YU H, et al. Critical factors and their effects on product maturity in food waste composting[J]. Environmental Monitoring and Assessment, 2015, 187(4): 217. doi: 10.1007/s10661-015-4430-9 [21] 张静美, 吴兴兴. 森林枯枝落叶堆肥过程中理化性质变化规律探究[J]. 南方农业, 2020, 14(32): 232-4. [22] 杨延梅, 席北斗, 刘鸿亮, 等. 餐厨垃圾堆肥理化特性变化规律研究[J]. 环境科学研究, 2007(02): 72-7. doi: 10.3321/j.issn:1001-6929.2007.02.015 [23] BEFFA T, BLANC M, LYON P F, et al. Isolation of Thermus strains from hot composts (60 to 80 degrees C)[J]. Applied and Environmental Microbiology, 1996, 62(5): 1723-7. doi: 10.1128/aem.62.5.1723-1727.1996 [24] LI G, LI Y, LI Y, et al. Advance on Composting of Solid Waste and Utilization of Additives[J]. Journal of Agro-environment science, 2003, 22(2): 252-6. [25] 翟红, 张衍林, 艾平, 等. 不同初始含水率对沼渣和秸秆混合堆肥过程的影响[J]. 湖北农业科学, 2011, 50(21): 4357-60. doi: 10.3969/j.issn.0439-8114.2011.21.011 [26] 盛蒂, 朱兰保. 农业废弃物好氧堆肥理化指标特性研究[J]. 长春师范大学学报, 2020, 39(08): 68-73. [27] 于子旋, 杨静静, 王语嫣, 等. 畜禽粪便堆肥的理化腐熟指标及其红外光谱[J]. 应用生态学报, 2016, 27(06): 2015-23. [28] 李孟婵, 张鹤, 杨慧珍, 等. 不同原料好氧堆肥过程中碳转化特征及腐殖质组分的变化[J]. 干旱地区农业研究, 2019, 37(02): 81-7+94. [29] 黄光群, 黄晶, 张阳, 等. 沼渣好氧堆肥种子发芽指数快速预测可行性分析[J]. 农业机械学报, 2016, 47(05): 177-82. [30] 李赟, 袁京, 李国学, 等. 辅料添加对厨余垃圾快速堆肥腐熟度和臭气排放的影响[J]. 中国环境科学, 2017, 37(03): 1031-9. [31] 罗珈柠, 郑思俊, 王妍婷, 等. 原料对餐厨垃圾堆肥产品的影响及其绿地应用适宜性分析[J]. 环境工程学报, 2014, 8(11): 4977-83. [32] 杨柏松, 熊文江, 朱巧银. 好氧堆肥技术研究[J]. 现代化农业, 2016(07): 57-9. doi: 10.3969/j.issn.1001-0254.2016.07.037 [33] BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444-53. doi: 10.1016/j.biortech.2008.11.027 [34] LARNEY F J, HAO X. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada[J]. Bioresource Technology, 2007, 98(17): 3221-7. doi: 10.1016/j.biortech.2006.07.005 [35] CHEN M, XU P, ZENG G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6): 745-55. doi: 10.1016/j.biotechadv.2015.05.003 [36] 王站付, 金海洋, 杨晓磊, 等. 商品有机肥与餐厨垃圾堆肥产品多指标比较[J]. 安徽农业科学, 2020, 48(20): 62-4. doi: 10.3969/j.issn.0517-6611.2020.20.018