利用海上油气田水基钻井废物制备烧结砖

张忠亮, 金容旭, 张雪梅, 刘文士, 袁辉. 利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
引用本文: 张忠亮, 金容旭, 张雪梅, 刘文士, 袁辉. 利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
ZHANG Zhongliang, JING Rongxu, ZHANG Xuemei, LIU Wenshi, YUAN Hui. Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
Citation: ZHANG Zhongliang, JING Rongxu, ZHANG Xuemei, LIU Wenshi, YUAN Hui. Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065

利用海上油气田水基钻井废物制备烧结砖

    作者简介: 张忠亮(1983—),男,本科。研究方向:海上钻井废弃物处置。E-mail:zhangzhl6@cosl.com.cn
    通讯作者: 刘文士(1984—),男,博士,副研究员。研究方向:油气开发废弃物处理。E-mail:liuwenshi@swpu.edu.cn
  • 中图分类号: X7

Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field

    Corresponding author: LIU Wenshi, liuwenshi@swpu.edu.cn
  • 摘要: 为探索海上石油钻井废物的资源化处置途径,以海上水基钻屑为原料开展了制备烧结砖的可行性研究。考察了不同工艺条件(原料配比和烧结温度)对烧结砖性能的影响,并确定了最优制备工艺及参数,探究了烧结砖的烧结机理,揭示了重晶石对烧结砖性能的影响机制。结果表明,在最佳制备工艺条件下(钻屑∶页岩∶煤炭=30∶65∶5、水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃、保温3 h),制得的烧结砖建材性能均满足国家标准《烧结普通砖》(GB/T 5101-2017)中MU15等级要求。烧结砖的主要矿物相为石英(SiO2)、钠长石(NaAlSi3O8)、赤铁矿(Fe2O3)、钙长石(CaAl2Si2O8)和重晶石(BaSO4),构成烧结砖的骨架结构;重晶石易在砖体内部微孔边界形成隔断,阻止熔融液相填充进而增大孔隙率降低砖体的性能。本研究结果可为海上油气田水基钻井废物回收上岸后的资源化处置提供参考。
  • 随着城市化进程的加快,城市绿化也因其在提高城市环境质量、维持城市生态平衡等方面的重要作用得以迅速发展。我国城市园林绿化产生的落叶、剪草、枯枝等绿色废弃物,年产量已增加到3.5×108 t左右[1]。堆肥化处理由于可以将废弃物转化为对植物生长和土壤改良有促进效果的堆肥产品,已成为高效处理并实现废弃物再利用的重要途径。绿化废弃物含有丰富的有机物质,这一特点使其腐熟后更容易获得高养分的肥料;但另一方面,绿化废弃物中大量结构紧密的木质纤维素成分使他们不易被微生物分解[2],而且处理不当会造成腐熟缓慢,产生气味污染以及堆肥产品降解不完全等问题。

    由于堆肥是以微生物为主导的有机废弃物降解过程,因此,可以通过添加微生物菌剂来加快木质纤维素降解。杭怡琼等[3]研究发现,白腐真菌能够有效且有选择性地降解植物纤维原料中的木质素。黄丹莲[4]发现,木霉菌等真菌不仅能分泌胞外酶,还可以利用菌丝穿插破坏纤维素结构,实现对纤维素的高效分解。此外,纤维素酶作为一种可以促进木质纤维素糖化的酶制剂,在动物饲料和纸浆生产等领域已被广泛应用[5-6]并显示出良好的降解效果,但是在堆肥领域却鲜有关于纤维素酶的应用研究。同时,有研究[2,7-9]表明,适宜的粒径可以提高堆肥期间的微生物活性,从而加快大分子物质的降解速度。过大的粒径会导致通风过度,热量散失;过小的粒径会使持水量过高,通氧量不足,这些都不利于微生物进行代谢活动。已有研究[10]提出的最佳堆肥粒径为5~30 mm,没有统一的标准;而且大部分研究[11-12]缺少对微生物指标的分析或是采用传统的DGGE技术进行微生物检测,无法准确地反映粒径与微生物群落结构和堆肥腐熟效果的关系。因此,初始粒径对绿化废弃物堆肥的影响仍需进一步研究,这也影响着外源添加剂的作用效果。

    本研究采用由白腐真菌和木霉菌组成的微生物菌剂,结合纤维素酶制成外源添加剂,进行不同粒径的绿化废弃物堆肥,通过分析堆肥的理化性质和细菌群落结构,探究不同初始粒径和外源添加剂对绿化废弃物堆肥腐熟度的促进效果,并提出最优参数组合,为提高绿化废弃物堆肥质量提供了参考。

    实验材料:作为堆肥原材料的绿化废弃物主要来自于北京市城市景观维护过程中产生的枯枝落叶和修剪的枝条(多为柳树、槐树、杨树等),分别粉碎至2 mm和5 mm;微生物菌剂包括木霉菌和白腐真菌,推荐接种量(g/g)为3%~5%;纤维素酶的酶活为2×104 U·g−1;干羊粪用于调整原料的C/N至28左右;发芽实验选择白菜种子进行。供试材料和堆肥初始性质如表1所示。

    表 1  供试原料基本性质
    Table 1.  Basic properties of raw materials for compost
    供试材料pH有机碳/(g·kg−1)全氮/(g·kg−1)碳氮比
    绿化废弃物6.76480.28.954
    干羊粪7.41261.213.918.8
    2 mm绿化废弃物堆肥7.75336.411.629
    5 mm绿化废弃物堆肥7.66340.212.627
     | Show Table
    DownLoad: CSV

    实验仪器:恒温培养箱(RXZ-500A,宁波江南仪器有限公司);精密pH/EC仪(MP522,上海精密科学仪器有限公司);TOC分析仪(TOC-5000A,日本岛津公司);紫外可见分光光度计(TU-1810DS,北京普析通用仪器有限责任公司)。

    实验共有8个处理(T1~T8)(表2),设计2 mm和5 mm 2种粒径,纤维素酶和菌剂的接种量(g/g)分别设置为物料干质量的0、2%和0、2%、4%,按表2所示的比例混配后作为外源添加剂。所有处理重复3次。每个处理按设计参数混配1 000 g(干质量)混合物,放入塑料长方体(35 cm×22 cm×10 cm)发酵容器中,添加蒸馏水,将每个处理的水分含量统一调节至65%,最后将发酵容器密封,并置于恒温培养箱中,于50 ℃下发酵22 d。每3 d进行翻堆和补水,以保证每个容器中的堆肥有适宜的氧气和水分。堆肥结束后,于每个处理的顶部、中部和底部共取样200 g,混合均匀。一部分样品作风干处理用于有机碳、全氮、pH、电导率(EC)和腐殖指标的测定;剩余新鲜样品与去离子水按1∶10(g∶mL)混合,振荡2 h浸提后过滤,在25 ℃恒温的培养箱内培养白菜种子,放置48 h后,取出记录发芽种子个数和根长,计算发芽指数[13]。实验第2天、12天、22天,对T1~T8实验组取样进行细菌高通量分析,分别标注为T1D2~T8D2、T1D12~T8D12和T1D22~T8D22,代表初期堆肥、中期堆肥和末期堆肥。

    表 2  实验因素水平设计
    Table 2.  Standard parameters of composting
    处理组粒径/mm纤维素酶∶菌剂
    T120∶0
    T220∶4
    T322∶2
    T422∶4
    T550∶0
    T650∶4
    T752∶2
    T852∶4
     | Show Table
    DownLoad: CSV

    有机碳、全氮、pH和EC值参照文献的方法[14]测定:有机碳采用外加热法测定;全氮采用凯氏定氮法测定;使用pH/EC仪测定pH和EC值。微生物指标参照MAO等[15]的方法测定,并在门水平注释其群落的物种信息。根据鲍士旦[16]的方法提取腐殖质和胡敏酸,提取液使用TOC分析仪分别测定得腐殖质和胡敏酸含量[17];腐殖质提取液采用紫外可见分光光度计测定吸光度比值(E4/E6)[14]

    腐殖质系数[12]按式(1)计算,发芽指数[18]按式(2)计算。

    FHI=CHACT×100% (1)
    FGI=STLTSCLC×100% (2)

    式中:FHI为腐殖质系数;CHA为胡敏酸含量,g·kg−1CT为总有机碳含量,g·kg−1FGI为发芽指数;ST为处理组平均发芽数量;LT为处理组平均根长,mm;SC为对照组平均发芽数量;LC为对照组平均根长,mm。

    使用CANOCO 5软件进行RDA分析,采用SPSS 23软件进行方差分析和主成分提取,依据参考文献的方法[19]进行主成分分析。

    在堆肥过程中,微生物不断分解利用有机物质进行繁殖和代谢,作为其主要能量来源的碳素以远大于氮素的速度被消耗,C/N整体呈下降趋势,与堆肥产品的腐熟程度密切相关。由图1可知,堆肥结束后,除对照组T1外的所有处理C/N均低于20,满足腐熟要求[20]。各处理C/N降幅排序为T3>T7>T4>T2>T8>T1>T6>T5。2 mm粒径组平均降幅较5 mm处理组提高12.7%,说明2 mm粒径更有利于有机质降解活动的进行;同时,添加纤维素酶和菌剂的处理T3和T7在各自粒径组中降幅最大,这是因为菌剂可以直接扩大微生物数量;另外,纤维素酶可以有针对性地提高纤维素的水解效率,生成更利于被微生物分解的单糖[21],进而提高微生物活性,在二者共同作用下,对促进腐熟起到协同效果。

    图 1  不同处理组的C/N比值
    Figure 1.  C/N ratio of different treatment groups

    pH与堆肥微生物的活性关系密切。有研究[22-23]指出,pH为7~8.5时,堆肥常见微生物的活性和繁殖力最强。如图2所示,堆肥结束后,所有处理的pH都呈弱碱性,从大到小顺序为T1>T5>T4>T2>T3>T8>T7>T6,2种粒径组对照处理的pH均高于同组其他处理。这说明添加剂对降低pH有一定影响。原因是,当有机化合物被分解时,具有外源添加剂的处理可促使微生物生成有机酸[24]。从粒径对pH的影响来看,2 mm处理组pH更高。这可能是由于2 mm处理的绿化废弃物在堆肥过程中,有利于能促进有机酸分解的微生物的生长,从而影响了发酵环境酸碱度。

    图 2  不同处理组的pH和EC值
    Figure 2.  pH and EC values of different treatment groups

    EC反映了堆肥产品中总盐的含量,可用作有机物分解动力学的判定指标[15]。在本研究中,堆肥末期各处理的EC值排序依次为T5>T2>T4>T7>T1>T3>T8>T6,2 mm粒径组的平均EC较5 mm粒径组高8.6%。这表明具有较小粒径的堆肥含有较多的盐和小分子物质[25]。这一结果可能是因为小粒径堆肥的较高比表面积增加了离子交换能力造成的[26]

    未腐熟堆肥中的毒性物质会抑制植物的生长,因此,堆肥浸提液对植物生长的影响可用于评价堆肥的植物毒性,用发芽指数[27](GI)表示。图3显示,GI值从大到小依次为T3>T8>T4>T6>T5>T7>T2>T1,所有堆肥的GI均大于60%,高于腐熟标准要求的50%的阈值[28]。在2 mm粒径处理中,具有外源添加剂的处理组GI值较对照组增加了15%~36%;在5 mm粒径处理中,增加了2%~16%。这表明纤维素酶和菌剂的添加对有机毒物的降解产生了积极影响,能有效改善GI,2 mm粒径更有利于增强添加剂的作用效果。

    图 3  不同处理组的发芽指数GI
    Figure 3.  GI value of different treatment groups

    腐殖酸在波长465 nm和665 nm处具有特异吸收峰值。在堆肥过程中,2个波长处的吸光度比值(E4/E6)随着腐殖酸分子缩合度的增大而减小[29],成为评价堆肥结构稳定性的重要参数之一。如图4所示,堆肥结束时,各处理堆肥的E4/E6排序为T5>T7>T3>T2>T4>T8>T1>T6,在5 mm处理组中获得相对较高的E4/E6比值,较2 mm组高11.1%。这说明2 mm处理可使堆肥中的腐殖酸有更高的聚合度和稳定性,品质更佳。

    图 4  不同处理组的吸光度比值E4/E6
    Figure 4.  E4/E6 ratio of different treatment groups

    堆肥是大分子碳水化合物通过微生物转化为腐殖质的过程。图5显示,堆肥末期,2 mm处理的腐殖质和胡敏酸的平均含量分别比5 mm处理高17.9%和3.7%。这可能是由于小粒径处理中的纤维素材料更容易被分解,为氧化和芳香结构的形成提供了丰富的底物。在相同的粒度组中,对照组的腐殖质和胡敏酸含量最小,这归因于添加纤维素酶和菌剂能增加相关功能菌的数量,促进腐殖质的形成。除了腐殖质含量的变化,腐殖化系数(HI)被认为可以更准确地反映腐殖化程度[30]。在堆肥过程中,腐殖化系数呈上升趋势,分子质量较低的富里酸在矿化过程中降解,并浓缩成结构更复杂的大分子胡敏酸,使腐殖质更加稳定。在堆肥结束时,腐殖化系数排序为T4>T3>T8>T6>T2>T7>T1>T5,纤维素酶和菌剂对腐殖化系数有显著影响(P=0.001<0.05),说明二者的添加对提高堆肥腐熟程度有重要作用。

    图 5  不同处理组的腐殖质含量、胡敏酸含量和腐殖化系数
    Figure 5.  Humic substance content, humic acid content and humic index of different treatment groups

    堆肥理化指标的分析表明,2 mm粒径和外源添加剂处理组对改善堆肥理化性质有积极作用。为了从微生物角度解释粒径和添加剂对理化性质的影响,对粒径和添加剂对微生物群落组成以及特定功能微生物的影响进行了分析。好氧堆肥中的细菌被公认是堆腐基质中数量最大、分布最广泛的微生物类群,不仅分解单糖效率高,也兼具了真菌和放线菌分解木质纤维素的能力[31]。由图6(a)可知,整个堆肥过程的优势菌门的排序为厚壁菌门(Firmicutes)>绿弯菌门(Chloroflexi)>变形菌门(Proteobacteria)>放线菌门(Actinobacteria)>芽单胞菌门(Gemmatimonadetes)。堆肥初期,能有效地利用碳水化合物的厚壁菌门是优势菌种,平均丰度高达87.8%;堆肥中期,随着碳水化合物的减少,厚壁菌门丰度下降,变形菌门丰度增加至23.4%;堆肥末期,绿弯菌门平均丰度迅速增加到52.5%,放线菌门和芽单胞菌门也成为主要菌种。在堆肥过程中,具有降解纤维素功能的放线菌[32]的相对丰度持续上升,各个处理放线菌的增长比例排序为T3>T4>T8>T1>T2>T7>T5>T6,2 mm处理是5 mm处理的3.15倍。可见,2 mm更适合具有分解纤维素能力的细菌生长繁殖。在同粒径组中,只添加菌剂的处理表现不佳。其原因可能是,外源菌的介入对原生菌群的演替有一定影响,而同时具有纤维素酶和菌剂的外源添加剂处理与对照处理相比,放线菌数量有明显提升。这说明纤维素酶对降解功能菌的繁殖代谢有积极作用,从而有效优化堆肥性质。

    图 6  细菌群落结构与RDA分析
    Figure 6.  Bacterial community structure and redundancy analysis

    为进一步研究细菌群落组成与理化性质之间的关系,对堆肥理化性质与堆肥样品的主要菌门进行了RDA分析(图6(b))。结果显示,C/N、pH、GI和胡敏酸与细菌群落呈显著相关(P<0.05)。C/N和pH分别与厚壁菌门和变形菌门呈正相关,发芽指数和胡敏酸与成熟阶段的主要细菌活性相关。通过分析不同堆肥时期的主导菌群发现,在堆肥初期和中期,与5 mm相比,2 mm处理组中主导菌群(厚壁菌门和变形菌门)数量更多。这表明2 mm粒径能为这些微生物提供更适合生长繁殖的环境,加快堆肥进程。在腐熟阶段,2个粒径组与能促进腐殖化的末期主导细菌(放线菌门、芽单胞菌门)[28]的相关性分别为T3>T4>T2>T1和T7>T8>T5>T6。在同粒径组中,同时添加纤维素酶和菌剂的处理与腐殖功能菌相关性更大,对其生长繁殖有积极作用,从而提高了GI、腐殖质和胡敏酸含量。这说明添加纤维素酶和菌剂能促进堆肥后期熟化,与腐殖化分析所得结论一致。因此,粒径和添加剂可以通过影响细菌群落来优化理化性质,2 mm处理组和同时具有纤维素酶与菌剂的处理组能有效促进相关功能菌增长,改善堆肥质量。

    为避免单个指标评价的偏差和片面性,本研究采用主成分分析法,综合8项理化指标对所有处理进行综合量化评价,以更全面客观地评估不同处理的堆肥质量。分析共提取3个主成分,方差贡献率累计达85.676%,满足大于85%的要求[19]。主成分提取结果见表3,各处理的主成分综合评分见表4

    表 3  堆肥指标主成分提取
    Table 3.  Principal component extraction of compost index
    主成分分析指标特征根贡献率/%累计贡献率/%
    第1主成分pH、EC、腐殖化系数、胡敏酸含量3.20440.05540.055
    第2主成分C/N、GI、E4/E62.05425.67365.728
    第3主成分腐殖质含量1.59619.94885.676
     | Show Table
    DownLoad: CSV
    表 4  堆肥主成分综合评分
    Table 4.  Principal component comprehensive score of composts
    处理组F1得分F2得分F3得分F得分F排名
    T1−1.476−1.244−0.666−1.1748
    T2−0.734−0.1551.5000.0804
    T31.4600.5191.5271.1781
    T41.029−0.8801.1450.4523
    T5−3.3521.574−0.209−0.8937
    T61.803−0.698−1.938−0.0495
    T7−0.1520.699−0.911−0.0946
    T81.4210.210−0.4480.5082
     | Show Table
    DownLoad: CSV

    表4可知,所有处理从优至劣依次是T3>T8>T4>T2>T6>T7>T5>T1,表现最好的是处理T3,即2 mm粒径添加由2%纤维素酶和2%菌剂组成的外源添加剂,综合分数为1.178分;表现最差的是2 mm粒径不加外源添加剂的处理T1,综合分数为−1.174分。2 mm粒径组平均得分高于5 mm粒径组,2 mm粒径组内排序为T3>T4>T2>T1,5 mm粒径组内排序为T8>T6>T7>T5。2种粒径组中有外源添加剂的处理表现均好于对照处理。其中,2 mm的最优处理是T3,纤维素酶和菌剂比例为2∶2;5 mm的最优处理是T8,纤维素酶和菌剂比例为2∶4。

    主成分分析结果表明,2 mm处理组的表现整体优于5 mm处理组。究其原因可能包括2个方面:一是绿化废弃物含有大量结构紧密的纤维素和半纤维素,粒径决定了酶与这些大分子物质的接触面积和降解效率,2 mm粒径处理可以增加堆料表面积,提升酶解效果和速率;二是在孔隙率、温度和湿度等方面,2 mm粒径组为微生物提供了更好的生长代谢环境。张璐[14]曾提出,适当的粒径可以提高绿化废弃物堆料的通气透水性,并减少水从表面蒸发,改善微生物活动的物理微环境。

    在同样添加4%菌剂的条件下,混配纤维素酶的外源添加剂效果优于只具有菌剂的外源添加剂。具体表现在:添加2%纤维素酶的T4组和T8组较不添加纤维素酶的T2组和T6组分别高0.372分和0.557分,表明纤维素酶对促进堆肥腐熟有至关重要的作用。其原因可能是,外源酶可以补充堆料中纤维素酶数量的不足,提升胞外纤维素酶的活力;同时,针对无法直接利用纤维素的微生物,纤维素酶作为中间介质将纤维素分解成微生物易利用的单糖,能有效提高生物质的水解。

    在同样添加2%纤维素酶的条件下,分别混配2%和4%的菌剂,在不同粒径条件下的堆肥效果有明显差异。在2 mm粒径组中,添加2%菌剂的T3组效果优于添加4%菌剂的T4组,而5 mm粒径条件下则刚好相反。这可能归因于2 mm较5 mm粒径条件更适合高温堆肥细菌群落,并促进具有降解纤维素能力的细菌的生长和繁殖,添加过多菌剂导致微生物数量过多,发酵过程中的微生物环境平衡被破坏,微生物活性受到抑制[33];相反,5 mm条件下接种更多菌剂可以在合理范围内增加微生物数量,促进堆肥的腐熟。这也说明粒径对添加剂的作用效果有重要影响,相似观点是ZHANG等[34]的研究,在不同堆肥粒径下,添加鼠李糖脂,堆肥性质表现出显著差异。

    1) 2 mm粒径的堆肥处理较5 mm能促进C/N和E4/E6值下降,提高腐殖质含量、胡敏酸含量和腐殖化系数,有利于堆肥腐殖化和稳定化;外源纤维素酶和菌剂可以降低C/N,提高发芽指数和各项腐殖化指标,促进了有机质降解,提高了堆肥质量。

    2)厚壁菌门、绿弯菌门、变形菌门、放线菌门和芽单胞菌门是堆肥的主要菌门。2 mm处理组和同时具有纤维素酶与菌剂的处理组能通过促进功能菌增长,优化堆肥理化性质。

    3)采用主成分分析法进行综合评价可得:纤维素酶和菌剂混配的促腐效果好于单一成分的外源添加剂,2 mm粒径可以增强添加剂的作用效果;T3组(2 mm粒径添加配比为2∶2的外源添加剂)综合评分最高,是最优堆肥处理。

  • 图 1  烧结砖制备工艺流程图

    Figure 1.  Process flow chart of sintered brick preparation

    图 2  海上水基钻屑热分析图

    Figure 2.  Thermal analysis of offshore water-based drill cuttings

    图 3  不同水基钻屑掺入量和烧结温度对烧结收缩率和体积密度的影响

    Figure 3.  Effects of different water-based drill cuttings content and sintering temperature on the sintering shrinkage rate and bulk density

    图 4  不同水基钻屑掺入量和烧结温度对抗压强度和吸水率的影响

    Figure 4.  Effects of different water-based drill cuttings content and sintering temperature on compressive strength and water absorption

    图 5  海上水基钻屑烧结砖XRD图

    Figure 5.  XRD patterns images of offshore water-based drill cuttings sintered bricks

    图 6  海上水基钻屑掺量试样SEM图

    Figure 6.  SEM images of offshore water-based drill cuttings sintered bricks

    图 7  1 000 ℃烧结温度下烧结砖的SEM-EDS图

    Figure 7.  SEM-EDS images of sintered brick at 1 000 ℃

    图 8  不同重晶石掺入量对烧结砖的性能影响

    Figure 8.  Effect of different BaSO4 on the properties of sintered bricks

    表 1  烧结砖原料配比

    Table 1.  Raw material proportion of sintered brick

    配方代号各组分质量分数/%含水率/%
    页岩水基钻屑煤炭
    W-18510514
    W-27520514
    W-36530514
    W-45540514
    W-54550514
    配方代号各组分质量分数/%含水率/%
    页岩水基钻屑煤炭
    W-18510514
    W-27520514
    W-36530514
    W-45540514
    W-54550514
    下载: 导出CSV

    表 2  水基钻屑和页岩的化学成分

    Table 2.  Chemical compositions of water-based drill cuttings and shale %(质量分数)

    供试原料SiO2Al2O3Fe2O3CaONa2OK2OMgOBaOSO3ClLOI
    海上水基钻屑53.4215.337.894.724.153.332.221.880.942.4522.10
    陆上水基钻屑29.9410.105.3219.300.271.021.5412.406.9015.60
    页岩61.0017.906.305.401.403.403.200.146.80
      注:—意为未检出。
    供试原料SiO2Al2O3Fe2O3CaONa2OK2OMgOBaOSO3ClLOI
    海上水基钻屑53.4215.337.894.724.153.332.221.880.942.4522.10
    陆上水基钻屑29.9410.105.3219.300.271.021.5412.406.9015.60
    页岩61.0017.906.305.401.403.403.200.146.80
      注:—意为未检出。
    下载: 导出CSV

    表 3  水基钻屑重金属浸出质量浓度

    Table 3.  Mass concentrations of heavy metals in water-based drill cuttings leachate mg·L−1

    供试原料或相关标准总铬
    海上水基钻屑0.003*0.006*0.0020.004*0.002*0.001*0.1790.0040.003*0.010
    陆上水基钻屑0.0110.0450.0040.004*0.0040.0040.1500.0070.003*0.010
    《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)100.000100.0001.0005.00015.0000.020100.0005.0005.0005.000
      注:*意为低于检出限。
    供试原料或相关标准总铬
    海上水基钻屑0.003*0.006*0.0020.004*0.002*0.001*0.1790.0040.003*0.010
    陆上水基钻屑0.0110.0450.0040.004*0.0040.0040.1500.0070.003*0.010
    《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)100.000100.0001.0005.00015.0000.020100.0005.0005.0005.000
      注:*意为低于检出限。
    下载: 导出CSV

    表 4  水基钻屑浸出液污染物质量浓度

    Table 4.  Mass concentrations of the contaminants in water-based drill cuttings leachate mg·L−1

    供试原料或相关标准TOCCODCl总汞总镉
    海上水基钻屑73.500568.0002.86×1030.0010.005
    陆上水基钻屑50.400146.6000.0000.004
    《污水综合排放标准》GB 8978-199620.000100.0000.0500.100
      注:—意为未检出。
    供试原料或相关标准TOCCODCl总汞总镉
    海上水基钻屑73.500568.0002.86×1030.0010.005
    陆上水基钻屑50.400146.6000.0000.004
    《污水综合排放标准》GB 8978-199620.000100.0000.0500.100
      注:—意为未检出。
    下载: 导出CSV

    表 5  水基钻屑烧结砖浸出液污染物和重金属质量浓度

    Table 5.  Test concentrations of contaminant and heavy metal in sintered bricks leachate mg·L−1

    烧结砖或相关标准TOCCODCl总汞总镉总铬总砷总铅总银
    烧结砖检测值4.000*10.000*0.0010.001*0.002*0.0450.004*0.003*
    《污水综合排放标准》GB 8978-1996200.000100.0000.0500.1001.5000.5001.0000.500
      注:*意为低于检出限;—意为未检出。
    烧结砖或相关标准TOCCODCl总汞总镉总铬总砷总铅总银
    烧结砖检测值4.000*10.000*0.0010.001*0.002*0.0450.004*0.003*
    《污水综合排放标准》GB 8978-1996200.000100.0000.0500.1001.5000.5001.0000.500
      注:*意为低于检出限;—意为未检出。
    下载: 导出CSV
  • [1] JORISSEN F J, BICCHI E, DUCHEMIN G, et al. Impact of oil-based drill mud disposal on benthic foraminiferal assemblages on the continental margin off Angola[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2009, 56(23): 2270-2291. doi: 10.1016/j.dsr2.2009.04.009
    [2] GRANT A, BRIGGS A D. Toxicity of sediments from around a North Sea oil platform: are metals or hydrocarbons responsible for ecological impacts?[J]. Marine Environmental Research, 2002, 53(1): 95-116. doi: 10.1016/S0141-1136(01)00114-3
    [3] 张羽臣, 岳明, 陈毅, 等. 渤海油田钻井废物处置技术适用性分析[J]. 油气田环境保护, 2019, 29(1): 26-28+36+61. doi: 10.3969/j.issn.1005-3158.2019.01.007
    [4] 冯帆, 王超, 黄亮, 等. 国内海上油田油基钻屑处理现状及技术展望[J]. 资源节约与环保, 2019(01): 78+91.
    [5] 王朝强, 梅绪东, 张春, 等. 我国钻井固废制备烧结砖研究现状[J]. 粉煤灰综合利用, 2018, 2: 93-96. doi: 10.3969/j.issn.1005-8249.2018.02.025
    [6] 王朝强, 梅绪东, 张春, 等. 页岩气水基钻屑制备烧结砖性能研究[J]. 非金属矿, 2018, 41(3): 49-51. doi: 10.3969/j.issn.1000-8098.2018.03.016
    [7] 冯真. 页岩气水基钻屑制备低密度陶粒支撑剂及其性能研究[D]. 武汉: 武汉理工大学, 2018.
    [8] 陆林峰, 易畅, 管勇, 等. 钻井固体废物制免烧砖技术及试验[J]. 石油与天然气化工, 2012, 41(2): 235-238. doi: 10.3969/j.issn.1007-3426.2012.02.026
    [9] 关举忠. 油田钻井废泥浆制备免烧砖的实验及应用[J]. 石油和化工设备, 2015, 18(7): 100-101. doi: 10.3969/j.issn.1674-8980.2015.07.030
    [10] PISZCZ-KARAŚ K, KLEIN M, HUPKA J, et al. Utilization of shale cuttings in production of lightweight aggregates[J]. Journal of Environmental Management, 2019, 231: 232-240. doi: 10.1016/j.jenvman.2018.09.101
    [11] MOHAMAD PUAD H A, MUHD NOOR M Y. Behaviors of 323Th, 238U, 228Ra and 226Ra on combustion of crude oil terminal sludge[J]. Journal of Environmental Radioactivity, 2004, 73(3): 289-305. doi: 10.1016/j.jenvrad.2003.10.004
    [12] POLETTINI A, POMI R, TRINCI L, et al. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives[J]. Chemosphere, 2004, 56(10): 901-910. doi: 10.1016/j.chemosphere.2004.05.004
    [13] 中华人民共和国国家环境保护总局. 固体废物浸出毒性浸出方法 硫酸硝酸法: HJ/T 299-2007[S]. 北京: 中国环境科学出版社, 2007.
    [14] 中华人民共和国国家环境保护总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
    [15] 中华人民共和国环境保护部. 固体废物浸出毒性浸出方法 水平振荡法: HJ 557-2010[S]. 北京: 中国标准出版社, 2010.
    [16] 国家环境保护局, 国家技术监督局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国标准出版社, 1996.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 砌墙砖试验方法: GB/T 2542-2012[S]. 北京: 中国标准出版社, 2012.
    [18] 西安墙体材料研究设计院. 烧结普通砖: GB 5101-2003[S]. 北京: 中国标准出版社, 2003.
    [19] 杨传猛. 铁尾矿制备烧结砖和陶粒的研究[D]. 南京: 南京理工大学, 2015.
    [20] PHONPHUAK N, KANYAKAM S, CHINDAPRASIRT P. Utilization of waste glass to enhance physical–mechanical properties of fired clay brick[J]. Journal of Cleaner Production, 2016, 112: 3057-3062. doi: 10.1016/j.jclepro.2015.10.084
    [21] DAI Z, ZHOU H, ZHANG W, et al. The improvement in properties and environmental safety of fired clay bricks containing hazardous waste electroplating sludge: The role of Na2SiO3[J]. Journal of Cleaner Production, 2019, 228: 1455-1463. doi: 10.1016/j.jclepro.2019.04.274
    [22] 周伟伦, 廖正家, 陈涛, 等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678.
    [23] 陈佳. 石煤提钒尾矿制备烧结陶粒的工艺及机理研究[D]. 武汉: 武汉科技大学, 2013.
    [24] 马雯, 呼世斌. 以城市污泥为掺料制备烧结砖[J]. 环境工程学报, 2012, 6(3): 1035-1038.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.1 %DOWNLOAD: 2.1 %HTML全文: 84.9 %HTML全文: 84.9 %摘要: 13.0 %摘要: 13.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.8 %其他: 94.8 %XX: 2.9 %XX: 2.9 %伊春: 0.1 %伊春: 0.1 %内网IP: 0.2 %内网IP: 0.2 %北京: 0.7 %北京: 0.7 %南昌: 0.1 %南昌: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %天津: 0.1 %天津: 0.1 %常州: 0.1 %常州: 0.1 %成都: 0.1 %成都: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.1 %杭州: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.2 %郑州: 0.2 %鹤岗: 0.1 %鹤岗: 0.1 %其他XX伊春内网IP北京南昌嘉兴圣克拉拉天津常州成都朝阳杭州桂林武汉济南深圳许昌贵阳运城郑州鹤岗Highcharts.com
图( 8) 表( 5)
计量
  • 文章访问数:  4669
  • HTML全文浏览数:  4669
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-12
  • 录用日期:  2021-08-18
  • 刊出日期:  2021-09-10
张忠亮, 金容旭, 张雪梅, 刘文士, 袁辉. 利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
引用本文: 张忠亮, 金容旭, 张雪梅, 刘文士, 袁辉. 利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
ZHANG Zhongliang, JING Rongxu, ZHANG Xuemei, LIU Wenshi, YUAN Hui. Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065
Citation: ZHANG Zhongliang, JING Rongxu, ZHANG Xuemei, LIU Wenshi, YUAN Hui. Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 3023-3031. doi: 10.12030/j.cjee.202105065

利用海上油气田水基钻井废物制备烧结砖

    通讯作者: 刘文士(1984—),男,博士,副研究员。研究方向:油气开发废弃物处理。E-mail:liuwenshi@swpu.edu.cn
    作者简介: 张忠亮(1983—),男,本科。研究方向:海上钻井废弃物处置。E-mail:zhangzhl6@cosl.com.cn
  • 1. 中海油田服务股份有限公司,廊坊 065201
  • 2. 西南石油大学化学化工学院,成都 610500

摘要: 为探索海上石油钻井废物的资源化处置途径,以海上水基钻屑为原料开展了制备烧结砖的可行性研究。考察了不同工艺条件(原料配比和烧结温度)对烧结砖性能的影响,并确定了最优制备工艺及参数,探究了烧结砖的烧结机理,揭示了重晶石对烧结砖性能的影响机制。结果表明,在最佳制备工艺条件下(钻屑∶页岩∶煤炭=30∶65∶5、水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃、保温3 h),制得的烧结砖建材性能均满足国家标准《烧结普通砖》(GB/T 5101-2017)中MU15等级要求。烧结砖的主要矿物相为石英(SiO2)、钠长石(NaAlSi3O8)、赤铁矿(Fe2O3)、钙长石(CaAl2Si2O8)和重晶石(BaSO4),构成烧结砖的骨架结构;重晶石易在砖体内部微孔边界形成隔断,阻止熔融液相填充进而增大孔隙率降低砖体的性能。本研究结果可为海上油气田水基钻井废物回收上岸后的资源化处置提供参考。

English Abstract

  • 海上油气田在钻井作业过程中会产生大量钻井废物,这些废物因沾染钻井液成分或接触地层等原因而含有烃类、盐类、各类聚合物等污染物,故其成分复杂、有机物含量高,部分物质还具有生物毒性。在较长一段时期内,通常直接将钻井废物排入海洋[1-2],而使其成为了重要的污染源,如钻井废物中油类物质易在海面形成油膜,破坏海洋生态环境;含有钻井添加剂的钻屑沉积海底,可能毒害海洋生物,进而影响海洋生态系统及人群健康。随着环保要求日趋严格,越来越多地区已经禁止将钻井废物直接排海,“零排放”已成为大势所趋[3-4]。因此,将钻井废物运送回陆上处置几乎已成为部分区域水基钻井废物唯一可行的处置途径。但由于目前缺乏针对海上钻井废物的处理工艺,致使海上钻井废物回收上岸后造成堆积。以我国最大的海上油气田渤海油气田为例,截至2019年8月19日,渤海油气田海域水基钻井废物回收上岸后的累计堆放量已高达超过10×104 t,导致港口积压拖轮30多条,部分作业点停工或者推迟。钻井废物的末端处置问题已经影响到了前端的钻井勘探开发效率和作业计划。如何高效率解决海上水基钻井废物回收上岸后的后续处置问题,已成为海洋油气田开发要解决的重课题之一。

    鉴于钻井废物具有和部分建筑材料制备原料相似的成分,许多研究者对陆上油气田水基钻井废物回收制备建筑材料开展了相关研究,形成多种资源化工艺并推广应用。例如,以陆上水基钻井废物为原料制备烧结砖[5-6]、陶粒[7]、水泥、免烧砖[8-9]和混凝土等[10]。其中,烧结工艺是目前我国陆上油气田的主流处置工艺,被认为“环境可行”并实现了大范围工业应用。烧结工艺是指在高温下(通常是900 ℃以上)加热固体废物,诱导相邻颗粒的粘结或焊接,从而形成密实度更好的产品,该工艺在降低烧结制品孔隙率的同时提高了制品的其它相关工程性能。此外,烧结工艺还可以通过高温实现有机污染物的完全去除[11],并将重金属固结于以惰性硅酸盐为主的基体材料中以保证制品的环境安全性[12]。然而,海上水基钻井废物的成分与陆上有所差异,其高含盐特性决定了陆上现有处理工艺及技术无法实现完全复制。目前,国内专门针对海上水基钻井废物资源化利用的研究尚在探索阶段。

    本研究在对海上水基钻井废物的基本性能进行综合分析的基础上,以海上水基钻屑为主要原料,开展海上水基钻屑制备烧结砖工艺研究,以明确烧结砖性能的影响因素并探讨性能调控方法,进而确定最优制备工艺及相关工艺参数;此外,通过掌握重晶石对烧结砖性能的影响,并结合微观表征(矿物组成和微观形貌),对烧结机理进行深入探讨。本研究可为海上水基钻屑综合利用提供技术参考。

  • 海上水基钻屑取自渤海油气田某钻井平台,含水率约为16%,呈灰色渣状;陆上水基钻屑取自川南某页岩气井,呈灰色渣状;页岩取自四川某矿山,经磨细预处理后呈褐色颗粒状;煤炭取自四川某砖厂。采用的药品及试剂为浓硫酸(H2SO4)、浓硝酸(HNO4)、硫酸钡(BaSO4),均为分析纯。

  • 参照原料配比表(表1),将磨细预处理的海上水基钻屑、页岩和煤炭准确称量,在干基状态将原料混合均匀;然后在搅拌机中加入14%(质量分数)的自来水,搅拌均匀后于室温困料陈化4 h,以增强混合料可塑性,提高砖坯表面平滑度;将陈化好的物料装入模具时,采用压力试验机将物料在三联金属模具(40 mm×40 mm×160 mm)中压制成型,再将成型砖坯放入电热恒温干燥箱中,在(100±5)℃条件下干燥一定时间以去除砖坯水分;将干燥好的砖坯放入高温马弗炉中以5 ℃·min−1升温速率至最高烧结温度(900、950、1 000 ℃)后保温3 h,使原料之间充分反应,最后自然冷却至室温。其工艺流程图如图1所示。

  • 1)采用X射线荧光光谱仪(XRF,XRF-1800,日本岛津)对原料的化学成分进行分析。

    2)采用《固体废物 浸出毒性浸出方法 硫酸硝酸法》(HJ/T 299-2007)[13] 制备海上和陆上水基钻屑毒性浸出液,测定浸出液中的重金属浓度,并与《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[14]进行对比。

    3)采用《固体废物浸出毒性浸出方法-水平振荡法》(HJ 557-2010)[15]制备海上和陆上水基钻屑浸出液,测定浸出液中的污染物浓度并与《污水综合排放标准》(GB 8978-1996)[16]进行对比。

    4)参照标准《砌墙砖试验方法》(GB/T 2542-2012)[17],测试烧结砖的物理力学性能(烧结收缩率、体积密度、抗压强度和吸水率),并与《烧结普通砖》(GB/T 5101-2017)[18]进行对比,以评估烧结砖的建材性能。

    5)采用X射线衍射仪(XRD,X Pert PRO MPD,荷兰帕纳科公司)对烧结砖的矿物组成进行表征。

    6)采用扫描电子显微镜(SEM,ZEISS EV0 MA15,德国卡尔蔡司)对烧结砖的微观形貌进行分析。

  • 1)化学组成分析。海上水基钻屑、陆上水基钻屑和页岩的化学组成的对比如表2所示。海上水基钻屑与陆上水基钻屑的主要化学成分相似,均以SiO2、Al2O3和Fe2O3为主,同时含有部分CaO、Na2O、K2O、MgO等。由于陆上水基钻屑中的硅质量分数较低(29.24%),钙质量分数较高(19.30%),这可能是导致目前陆上水基钻屑在烧结砖中掺量比较低(低于10%)的主要原因之一。而海上水基钻屑中硅质量分数较高(53.42%),同时主要化学成分均在烧结砖适宜范围内(Al2O3为2.00%~10.00%、Fe2O3为2.00%~10.00%、CaO为0~10.00%)。因此,从化学组成来看,其具备制备烧结砖可行性。

    2)浸出毒性分析。由表3可知,陆上水基钻屑和海上水基钻屑重金属浸出毒性均远低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[14]中的危险废物限值。由表4可知,海上水基钻屑和陆上水基钻屑水浸出液中的部分指标(TOC、石油类)均不能完全达到《污水综合排放标准》(GB 8978-1996)[16]一级标准限值,在未妥善管理的情况下可能对环境造成二次污染。因此,海上水基钻屑与陆上水基钻屑均可归类为一般Ⅱ类工业固体废物而非危险废物,可直接进行资源化利用。

    3)热分析。为制定合理的烧成制度并探明海上水基钻屑在烧成过程中发生的物理化学变化,对水基钻屑进行了热分析,结果如图2所示。海上水基钻屑在加热过程中,整体呈逐渐失重趋势。200 ℃以下的失重,主要是样品中排除自由水引起的;200~600 ℃的失重主要是由于有机组分去除引起;600~800 ℃的明显失重主要是由于方解石和高岭石等矿物分解或一些低沸点物质挥发导致;800 ℃以上,钠长石不断熔融使得熔融液相提前出现,促使固相反应进行,形成新的结晶态物质。值得注意的是,当烧结温度高于900 ℃时,原料重量还在持续降低,初步推测,这可能是由于无机氯盐在高温段挥发或与其他物质反应而被释放出去所导致。结合目前传统烧结砖烧制温度(约900~1 100 ℃),本研究初步选定烧结温度分别为900、950和1 000 ℃。

  • 1)水基钻屑掺入量和烧结温度对烧结砖的烧结收缩率和体积密度的影响。烧结体积收缩率是指烧结砖试样烧结后的体积变化。干燥的成型坯体经高温烧结后,部分矿物组分分解和挥发物质去除,加之熔融玻璃相的粘结,会使砖体发生收缩。通常而言,烧结收缩率要求不超过8.0%[19],较高收缩率易导致烧结砖发生明显变形,从而降低砖体性能。实验结果如图3所示。由图3(a)可知,在相同烧结温度下,烧结收缩率随着水基钻屑掺入量增加而增加。这可能是因为,海上水基钻屑的LOI值较高(约22%),有机物以及高温易分解矿物或其它挥发性物质较多,因此,烧结过程中会使砖体内部产生更多孔隙,从而增大质量损失和孔隙率,最终在熔融玻璃相的粘结效应下导致砖体内部颗粒组分聚集进而产生收缩。在相同原料配比下,随着烧结温度的提高,烧结砖的烧结收缩逐渐增加。当烧结温度为1 000 ℃、水基钻屑掺入量为50%时,烧结收缩率最高金可达5.6%。不同烧结温度(900、950、1 000 ℃)下所有配比的烧结砖收缩率均小于8%,因此,烧结砖的外观均未发生明显变形收缩。由图3(b)可知,在相同烧结温度下,烧结砖的体积密度随着水基钻屑的掺入量增加而降低。这可能是因为海上水基钻屑中包含较多化学结晶水、有机成分和矿物组分(碳酸盐、高岭土等),故其LOI值远高于页岩(6.8%),因此,水基钻屑掺入量增加会增加砖坯在烧结过程中的质量损失。

    2)水基钻屑掺入量和烧结温度对烧结性的抗压强度和吸水率的影响。抗压强度作为评估建筑材料质量最重要的性能参数,直接决定着建筑材料的应用性。吸水率是衡量烧结砖耐久性能的一个重要因素。根据国家标准《烧结普通砖标准》(GB 5101-2017)[18]的要求,烧结普通砖的抗压强度最小不能低于10 MPa,吸水率则要求低于18%。由图4(a)可知,在相同烧结温度下,随着水基钻屑掺入量增大,抗压强度逐渐降低。这可能是因为,增加钻屑掺入量降低了泥料颗粒之间的结合性,此外,烧失量在烧结过程中致使产生了更多孔隙,造成砖体出现应力集中效应,极大降低了烧结砖体性能。由图4(b)可知,在相同烧结温度下,随着水基钻屑掺入量增大,吸水率则逐渐增大。当熔融玻璃相不足以填充内部孔隙时,将会降低抗压强度,增加烧结砖吸水率。在同一原料配比下,通过对比900、950、1 000 ℃温度下的烧结砖性能,发现随着烧结温度逐渐升高,烧结砖的性能有一定改善(抗压强度提高,吸水率降低)。这可能是因为,在保证砖体外观质量的前提下,适当提高烧结温度有助于促进熔融进而生成更多低共熔物和熔融玻璃相。本实验结果表明,海上水基钻屑掺入比增加对烧结砖性能呈负效应。当海上水基钻屑掺入量超过30%时,抗压强度低于10 MPa、吸水率高于18%,该砖体性能已不能满足《烧结普通砖》(GB 5101-2017)[18]的要求。

    综上所述,在海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、陈化时间4 h、成型压力20 MPa、(100 ± 5) ℃下干燥8 h、升温速率5 ℃·min−1、烧成温度1 000 ℃、保温时间3 h的条件下,制得的水基钻屑烧结砖的性能良好,能够满足《烧结普通砖》(GB/T 5101-2017)[18]中MU15的要求。

  • 为了解海上水基钻屑在烧结过程中的物相变化以及微观形貌,探明烧结砖强度来源,对烧结砖样品进行了XRD和SEM分析并深入探讨其烧结机理。

    1) XRD。图5为不同水基钻屑掺入量和烧结温度下烧结砖的XRD图。在不同水基钻屑掺入量(图5(a))和不同烧结温度(图5(b))条件下,烧结砖的主要矿物相均为石英(SiO2)、钠长石(NaAlSi3O8)、赤铁矿(Fe2O3)、钙长石(CaAl2Si2O8)和重晶石(BaSO4)。这些矿物组分形成了烧结砖的骨架结构,有助于提高其力学性能[20]。由图5(a)可知,在相同烧结温度(1 000 ℃)下,随着水基钻屑掺入量增加,使得烧结砖性能降低的同时,石英特征峰强度逐渐增大,而钠长石峰值则逐渐降低。通过观察XRD结果可知,这可能是因为水基钻屑中虽然含有一定钠长石,但是含量较低,提高水基钻屑掺入量将降低混料中的长石含量。钠长石在烧结过程中可以与石英及其余硅铝酸盐矿物形成低共熔物,促进矿物分解熔融,增加样品内部的熔融玻璃相[21]。由图5(b)可知,随着烧结温度升高,钠长石特征峰强度逐渐增高,同时,石英特征峰强度逐渐减小。这表明,提高烧结温度有助于长石矿物成分和更多石英熔融(即玻璃化),提升烧结砖性能。值得注意的是,在整个烧结过程中,重晶石(BaSO4)衍射峰基本无明显变化,这表明重晶石并未参与固相反应。重晶石主要来源于钻井阶段的加重材料,稳定性较好,具有较高熔融温度(约1 500 ℃左右),因此,在烧结砖烧结过程中稳定存在。

    2) SEM。图6为不同水基钻屑掺入量条件下的烧结砖微观结构图。由图6(a)~6(e)的变化可以看出,随着水基钻屑掺入量增加,烧结砖孔隙率增加,密实度降低,同时熔融玻璃相减少,导致了烧结砖性能降低。这可能是由于钻井岩屑中有机质燃烧、矿物组分分解及易挥发物质挥发使得烧结过程中大量气体逸出。此外,由图7可以看出,水基钻井岩屑烧结砖中主要元素为O、Si、Al、Ca和Fe,这表明烧结砖的矿物骨架结构以硅铝酸盐结构为主[22]。值得注意的是,在烧结砖中存在Ba元素;结合物相分析结果(图5)可知,烧结砖结构中存在重晶石。

  • 通过微观性能分析可知,重晶石(BaSO4)在整个烧结过程中稳定存在,并未参与固相反应。本节以页岩为主要原料,加入不同比例重晶石(0、2%、4%、6%、8%、10%),以研究重晶石对烧结砖性能的影响,结果见图8。由图8可知,随着重晶石掺入量的增加,烧结砖性能明显降低,同时伴随着孔隙率增加。未添加重晶石的烧结砖性能最优,在仅添加了2%重晶石后,烧结砖抗压强度降低了6.24 MPa。这可能是因为,重晶石硬度较低(约莫氏3.0~3.5);同时,也因为试样吸水率增加了4.58%。当重晶石掺入比超过6%,烧结砖的抗压强度(9.40 MPa)和吸水率(20.21%)均不满足《烧结普通砖》(GB/T 5101-2017)[18]相关要求。一般情况下,烧结过程中矿物分解和物质挥发导致气体逸出使得孔隙增加,而熔融液相的填充有助于微孔闭合[23]。然而,重晶石稳定性极好且并不容易发生热分解,这意味着在烧成阶段重晶石会在相邻微孔边界形成隔断,阻止了熔融液相填充,使得密实度降低孔隙率增大,最终导致砖体产生隔层现象从而降低了抗压性能。因此,水基钻屑中重晶石的存在可能会导致烧结砖孔隙率增加,进而影响烧结砖的抗压性能。

  • 烧结砖在使用过程中不可避免会接触到水,为确保其环境安全性,对最佳工艺制备条件下(海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃,保温时间3 h)制备的烧结砖浸出液中的污染物进行评估是必要的。检测结果如表5所示。由表5可知,经烧结处理后,水基钻屑烧结砖的水浸出液中污染物浓度均未超过《污水综合排放标准》(GB 8978-1996)[16]的排放限值。其中,Cl浓度降低极为明显,几乎实现了完全去除,这说明了高温烧结对氯离子去除是有效的。此外,烧结砖浸出液中大部分重金属也均未检出,这说明水基钻屑制烧结砖对重金属固化效果良好[24]。因此,从环境安全角度来看,制备烧结砖是一种适于处理海上水基钻屑的方法。

  • 1)在最佳制备工艺条件下(海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃,保温时间3 h)制备的烧结砖性能优良,可满足《烧结普通砖》(GB/T 5101-2017)中MU15的要求。

    2)重晶石(BaSO4)对烧结砖性能降低极为明显,在砖体内部微孔边界形成隔断,阻止熔融液相填充,这也限制了钻屑在烧结砖中的掺入比。

    3)烧结砖浸出液中各项环保指标均满足国家标准《污水综合排放标准》(GB 8978-1996)中的要求,可以实现对海上水基钻屑的无害化处理。

参考文献 (24)

返回顶部

目录

/

返回文章
返回