-
四环素(TC)是一种典型的抗生素,被广泛应用于人体治疗、畜牧业和水产养殖[1]。由于不能被人类和动物完全降解,摄入的TC只能通过粪便和尿液进入环境,经常在地表水、地下水,甚至饮用水中被检测到[2]。持续存在的TC会对生态环境和人体健康造成极大的危害。因此,去除水中的四环素显得尤为重要。不同于高级氧化法、生物处理法、膜过滤法和吸附法[3-6],光催化降解法以其高效、低能耗、绿色环保等优点,在污水处理中表现出良好的应用前景[7]。
金属有机骨架(MOFs)在光催化领域展现出的优异性能而备受关注[8-10]。MIL-88A(Fe)因其很强的可见光响应且安全无毒,被应用于光催化废水处理中[11]。但是,MIL-88A(Fe)由于有机配体的存在导致光催化剂光生电子-空穴对快速复合[12],且其较低的比表面积影响了其对污染物的吸附效果[13],从而限制了其光催化活性。已有研究利用氧化石墨烯(GO)促进MOFs的光生电荷的转移和传输,改善了材料的光催化性能,并且增强MOFs的稳定性[14]。但GO表面官能团有限[15],不能为MOFs晶体提供充足的生长位点,无法提供更多的吸附活性位点,这些都将阻碍其对水中污染物的高效吸附。离子液体(ILs)是一种具有良好稳定性、电导性、安全性的绿色溶剂[16],可以提升复合材料的分散性、导电性、吸附性能[17-19]等。此外,可以通过调节阴离子和阳离子的组成或在常规ILs的基础上,引入特定的基团(氨基)来获得功能化的离子液体以提供丰富的官能团,例如被用于酸性气体吸收的含胺基离子液体[TETAH]+[Ac]−[20]。据调研,目前尚未见[TETAH]+[Ac]−辅助生长IL/GO/MOFs用于光催化降解水中四环素的报道。
在本研究中,采用[TETAH]+[Ac]−辅助生长手段制备了IL/GO/88A,详细考察了其表面形态、晶体结构以及电子和光学性能,充分评估了IL/GO/88A对TC的光催化降解的性能;同时,提出了吸附-光催化协同机理以解释TC可能的降解路径,以期为新型MOFs光催化复合材料的开发及其在水污染控制领域的应用提供参考。
IL/GO/88A的制备及其对四环素的光催化降解性能
Synthesis of IL/GO/88A and its photocatalytic degradation performance for tetracycline
-
摘要: 使用离子液体(ILs)辅助生长新型光催化材料IL/GO/88A用于降解四环素(TC),使用XRD、FTIR、SEM、N2吸附-脱附、UV-vis、EIS等方法分别对催化材料进行了表征分析,考察了催化剂投加量、pH、TC浓度对TC降解的影响。该复合材料表现出高效的TC降解效率。在催化剂投加量为0.30 g·L−1、pH为5.7、TC溶度为10 mg·L−1的条件下,光照180 min后,IL/GO/88A对TC的去除率达到95.7%。催化剂在重复利用3次后仍能保持稳定的性能。此外,阐明了吸附-光催化协同机理,并推断·OH、h+是主要的活性物种。本研究结果对开发高效MOFs光催化复合材料并用于处理含四环素废水提供了新思路。Abstract: A novel photocatalyst IL/GO/88A was prepared for tetracycline (TC) degradation using the ionic liquids (ILs) assisted growth method. And the composite was characterized by XRD, SEM, N2 adsorption-desorption, UV-vis and EIS. The effects of the catalyst dosages, pH, and TC concentration on TC degradation were investigated. The composite material exhibited highly efficient TC degradation efficiency. Nearly 95.7% of TC could be removed after 180 min irradiation by the IL/GO/88A with dosage of 0.30 g·L−1 under the condition of 10 mg·L−1 TC and pH = 5.7. The catalyst maintained stable performance after 3 consecutive times recycle. In addition, the mechanism of adsorption-photocatalysis synergy was clarified, and ·OH− and h+ were determined to be the main active species. The results of this research provides a new idea for the development of efficient MOFs photocatalytic composite materials treating tetracycline-containing wastewater.
-
Key words:
- ionic liquids /
- MOFs /
- graphene oxide /
- photocatalysis /
- tetracycline
-
表 1 与其他光催化降解TC的MOFs复合材料的比较
Table 1. Comparison with other MOFs composite materials for photocatalytic degradation of TC
-
[1] LI S R, HUANG W L, YANG P Z, et al. One-pot synthesis of N-doped carbon intercalated molybdenum disulfide nanohybrid for enhanced adsorption of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2021, 754: 141925. doi: 10.1016/j.scitotenv.2020.141925 [2] MIAO X S, BISHAY F, CHEN M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada[J]. Environmental Science and Technology, 2004, 38: 3533-3541. doi: 10.1021/es030653q [3] XIN S S, LIU G C, MA X H, et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 280: 119386. doi: 10.1016/j.apcatb.2020.119386 [4] HUANG L H, LIU G F, DONG G H, et al. Reaction mechanism of zero-valent iron coupling with microbe to degrade tetracycline in permeable reactive barrier (PRB)[J]. Chemical Engineering Journal, 2017, 316: 525-533. doi: 10.1016/j.cej.2017.01.096 [5] PARK J A, NAM A, KIM J H, et al. Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties[J]. Chemosphere, 2018, 207: 347-356. doi: 10.1016/j.chemosphere.2018.05.096 [6] YU L L, CAO W, WU S C, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism[J]. Ecotoxicology and Environmental Safety, 2018, 164: 289-296. doi: 10.1016/j.ecoenv.2018.07.110 [7] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398: 125569. doi: 10.1016/j.cej.2020.125569 [8] LIN J W, HU Y Y, WANG L X, et al. M88/PS/Vis system for degradation of bisphenol A: Environmental factors, degradation pathways, and toxicity evaluation[J]. Chemical Engineering Journal, 2020, 382: 122931. doi: 10.1016/j.cej.2019.122931 [9] YAN D Y, HU H, GAO N Y, et al. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution[J]. Applied Surface Science, 2019, 498: 143836. doi: 10.1016/j.apsusc.2019.143836 [10] MEI W D, SONG H, TIAN Z Y, et al. Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: Regulation of photogenerated electron migration[J]. Materials Research Bulletin, 2019, 119: 110570. doi: 10.1016/j.materresbull.2019.110570 [11] YUAN R R, QIU J L, YUE C L, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification[J]. Chemical Engineering Journal, 2020, 401: 126020. doi: 10.1016/j.cej.2020.126020 [12] HUANG W Y, JING C W, ZHANG X D, et al. Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen[J]. Chemical Engineering Journal, 2018, 349: 603-612. doi: 10.1016/j.cej.2018.05.121 [13] LIU N, HUANG W Y, ZHANG X D, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128. doi: 10.1016/j.apcatb.2017.09.020 [14] ZHANG Y, LI G, LU H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4: 7594-7600. doi: 10.1039/c3ra46706f [15] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. Journal of Physical Chemistry B, 1998, 102: 4477-4482. doi: 10.1021/jp9731821 [16] FUKUMOTO K, YOSHIZAWA M, OHNO H. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127: 2398-2399. doi: 10.1021/ja043451i [17] GAN C L, LIANG T, LI W, et al. Amine-terminated ionic liquid modified graphene oxide/copper nanocomposite toward efficient lubrication[J]. Applied Surface Science, 2019, 491: 105-115. doi: 10.1016/j.apsusc.2019.06.141 [18] LIU N, CHEN X, MA Z F. Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2013, 48: 33-38. doi: 10.1016/j.bios.2013.03.080 [19] TANG Y Z, HUANG H L, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture[J]. Journal of Materials Chemistry A, 2019, 7: 18324-18329. doi: 10.1039/C9TA04408F [20] 孟祥海, 刘植昌, 张睿, 等. 用于吸收酸性气体的含胺基离子液体及其制备方法与应用: CN201010279634.7[P]. 2013-05-15. [21] CHALATI T, HORCAJADA P, GREF R, et al. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A[J]. Journal of Materials Chemistray, 2011, 21: 2220-2227. doi: 10.1039/C0JM03563G [22] WU H, MA M D, GAI W Z, et al. Arsenic removal from water by metal-organic framework MIL-88A microrods[J]. Environmental Science and Pollution Research International, 2018, 25: 27196-27202. doi: 10.1007/s11356-018-2751-2 [23] Socrates G. Infrared and Raman Characteristic Group Frequencies[M]. 3rd ed. New York: John Wiley & Sons, 2001. [24] REN G L, ZHAO K, ZHAO L. A Fenton-like method using ZnO doped MIL-88A for degradation of methylene blue dyes[J]. RSC Advances, 2020, 10: 39973-39980. doi: 10.1039/D0RA08076D [25] DAI J L, ZHAO D K, SUN W M, et al. Cu(II) Ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis[J]. ACS Catalysis, 2019, 9: 10761-10772. doi: 10.1021/acscatal.9b04060 [26] CAO W, YUAN Y H, YANG C, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chemical Engineering Journal, 2020, 391: 123608. doi: 10.1016/j.cej.2019.123608 [27] YANG C, YOU X, CHENG J H, et al. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B: Environmental, 2017, 200: 673-680. doi: 10.1016/j.apcatb.2016.07.057 [28] ZHAO K, ZHANG Z S, FENG Y L, et al. Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface[J]. Applied Catalysis B: Environmental, 2020, 268: 118740. doi: 10.1016/j.apcatb.2020.118740 [29] OH W D, LOK L W, VEKSHA A, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. doi: 10.1016/j.cej.2017.09.182 [30] AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63. [31] LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Applied Surface Science, 2016, 390: 368-376. doi: 10.1016/j.apsusc.2016.08.119 [32] PAN Y, YUAN X Z, JIANG L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chemical Engineering Journal, 2020, 384: 123310. doi: 10.1016/j.cej.2019.123310 [33] HE L, DONG Y N, ZHENG Y E, et al. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light[J]. Journal of Hazardous Materials, 2019, 361: 85-94. doi: 10.1016/j.jhazmat.2018.08.079 [34] FAKHRI H, BAGHERI H. Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: Synthesis, characterization and photodegradation of tetracycline and malathion[J]. Materials Science in Semiconductor Processing, 2020, 107: 104815. doi: 10.1016/j.mssp.2019.104815 [35] JIANG W, LI Z, LIU C B, et al. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst[J]. Journal of Alloys and Compounds, 2021, 854: 157166. doi: 10.1016/j.jallcom.2020.157166 [36] LIANG Q, CUI S N, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 456: 899-907. doi: 10.1016/j.apsusc.2018.06.173 [37] WANG D B, JIA F Y, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067