有机固废厌氧发酵产物的转化制备与应用进展

王凯军, 石川, 刘越. 有机固废厌氧发酵产物的转化制备与应用进展[J]. 环境工程学报, 2021, 15(6): 1840-1861. doi: 10.12030/j.cjee.202007004
引用本文: 王凯军, 石川, 刘越. 有机固废厌氧发酵产物的转化制备与应用进展[J]. 环境工程学报, 2021, 15(6): 1840-1861. doi: 10.12030/j.cjee.202007004
WANG Kaijun, SHI Chuan, LIU Yue. Review on typical products preparation and application in organic waste anaerobic fermentation treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(6): 1840-1861. doi: 10.12030/j.cjee.202007004
Citation: WANG Kaijun, SHI Chuan, LIU Yue. Review on typical products preparation and application in organic waste anaerobic fermentation treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(6): 1840-1861. doi: 10.12030/j.cjee.202007004

有机固废厌氧发酵产物的转化制备与应用进展

    作者简介: 王凯军(1960—),男,博士,教授。研究方向:水污染控制和资源化。E-mail:wkj@mail.tsinghua.edu.cn
    通讯作者: 王凯军, E-mail: wkj@mail.tsinghua.edu.cn
  • 基金项目:
    北京市科技计划项目(Z181100002418019)
  • 中图分类号: X705

Review on typical products preparation and application in organic waste anaerobic fermentation treatment

    Corresponding author: WANG Kaijun, wkj@mail.tsinghua.edu.cn
  • 摘要: 有机固废的高效转化和循环利用对解决全球环境污染、能源短缺和资源缺乏等共性问题具有积极作用。采用厌氧发酵技术高效处理有机固废,可合成制备出不同酸化产物,并促进酸化产品的加工应用。在文献及工程调研的基础上,梳理了有机固废厌氧酸化发酵的不同代谢途径,分析了不同酸化产物的经济性及工程化应用现状。以发酵产物乙醇、乳酸、丙酸和丁酸等为代表,分析了酸化产品的制备及应用状况。采用系列宏观与微观的调控手段,可促进酸化发酵目标产物的代谢转化,并实现有机固废酸化发酵脂肪酸类产物的高效合成,从而为发酵脂肪酸类产品的制备生产和加工应用提供参考。
  • 加载中
  • 图 1  酸化发酵的代谢途径通路

    Figure 1.  Metabolic pathway of acidogenic fermentation

    图 2  VFAs 平台产品生产及工业、商业应用

    Figure 2.  Schematic diagram of VFAs platform production and industrial and commercial application

    图 3  pH变化(4~11)与发酵类型和产物的关联模拟

    Figure 3.  Correlation simulation of different fermentation types and products with different pH values(4~11)

    表 1  典型农林和城市有机固废的主要成分

    Table 1.  Composition of typical organic wastes from agriculture, livestock and municipal management

    有机固废种类总固体体积分数/%挥发性固体体积分数/%总碳/%总氮/%有机固废的性质文献
    秸秆93.42±1.3078.95±0.90纤维素、半纤维素含量高[3]
    畜禽粪便22.50±0.9215.85±2.0134.694.33铜、锌、镍重金属含量高[4]
    生活垃圾22.17±1.5017.87±1.2821.601.55富含油脂[5]
    城市污泥24.4016.8015.182.2含水率高[6]
    有机固废种类总固体体积分数/%挥发性固体体积分数/%总碳/%总氮/%有机固废的性质文献
    秸秆93.42±1.3078.95±0.90纤维素、半纤维素含量高[3]
    畜禽粪便22.50±0.9215.85±2.0134.694.33铜、锌、镍重金属含量高[4]
    生活垃圾22.17±1.5017.87±1.2821.601.55富含油脂[5]
    城市污泥24.4016.8015.182.2含水率高[6]
    下载: 导出CSV

    表 2  发酵产物生产规模及应用

    Table 2.  Scale and application of fermentation products

    物质化学式羧酸产品生产规模主要应用
    C2H4O2乙酸产业化染料、颜料、涂层、黏结剂、聚酯纤维等
    C2H6O乙醇产业化食品工业、燃料等
    C3H6O2丙酸设计阶段食品添加剂、有机溶剂、增味剂、除草剂等
    C3H6O3乳酸产业化生物降解聚合物、食品添加剂、缓冲溶液等
    C4H8O2丁酸设计阶段食品增味剂、化工品、药品加工等
    物质化学式羧酸产品生产规模主要应用
    C2H4O2乙酸产业化染料、颜料、涂层、黏结剂、聚酯纤维等
    C2H6O乙醇产业化食品工业、燃料等
    C3H6O2丙酸设计阶段食品添加剂、有机溶剂、增味剂、除草剂等
    C3H6O3乳酸产业化生物降解聚合物、食品添加剂、缓冲溶液等
    C4H8O2丁酸设计阶段食品增味剂、化工品、药品加工等
    下载: 导出CSV

    表 3  乙醇型发酵产量现状

    Table 3.  Current situation of ethanol fermentation yield

    底物反应器类型pH水力停留时间/h有机负荷/
    (g·(L·d)−1)
    乙醇最大产量/
    (g·L−1)
    文献
    人工配制糖蜜废水CSTR6.2~6.9818~241.3~1.4[63]
    糖蜜废水CSTR4.3~4.53.6~4.646~1071.6[45]
    糖蜜废水CSTR4.8~5.2860.6[73]
    果蔬垃圾CSTR4.0~4.5240209.8[44]
    果蔬垃圾CSTR4.0120716.5[74]
    果蔬垃圾CSTR4.072186.7[75]
    糖蜜废水UASB8120.8[76]
    果蔬垃圾CSTR4.072143.5[65]
    葡萄糖CSTR5.09653.3[46]
    食物残渣CSTR27.6[77]
      注:CSTR(continuous stirred-tank reactor)即连续流搅拌槽式反应器;UASB(upflow anaerobic sludge blanket)即上流式厌氧污泥床反应。有机负荷单位以COD计。
    底物反应器类型pH水力停留时间/h有机负荷/
    (g·(L·d)−1)
    乙醇最大产量/
    (g·L−1)
    文献
    人工配制糖蜜废水CSTR6.2~6.9818~241.3~1.4[63]
    糖蜜废水CSTR4.3~4.53.6~4.646~1071.6[45]
    糖蜜废水CSTR4.8~5.2860.6[73]
    果蔬垃圾CSTR4.0~4.5240209.8[44]
    果蔬垃圾CSTR4.0120716.5[74]
    果蔬垃圾CSTR4.072186.7[75]
    糖蜜废水UASB8120.8[76]
    果蔬垃圾CSTR4.072143.5[65]
    葡萄糖CSTR5.09653.3[46]
    食物残渣CSTR27.6[77]
      注:CSTR(continuous stirred-tank reactor)即连续流搅拌槽式反应器;UASB(upflow anaerobic sludge blanket)即上流式厌氧污泥床反应。有机负荷单位以COD计。
    下载: 导出CSV

    表 4  不同有机底物乳酸生产的现状

    Table 4.  Current situation of lactic acid production from different organic substrates

    基质方法产物氮源pH温度/
    微生物浓度/
    (g·L−1)
    产量/
    (g·g−1)
    产率/
    (g·(L·h)−1)
    文献
    葡萄糖补料分批发酵D-乳酸花生饼粉9.042Sporolactobacillus sp. CASD226.000.8404.40[113]
    葡萄糖补料分批发酵L-乳酸花生饼粉10.045Bacillus sp. WL-S20225.000.9931.04[114]
    木糖补料分批发酵L-乳酸酵母膏6.050Bacilus coagulans C106215.700.9504.00[115]
    预处理玉米芯同步糖化发酵L-乳酸酵母膏6.050Bacillus coagulans LA204122.990.771.37[116]
    甜高粱甘蔗渣同步糖化发酵L-乳酸玉米浆干粉5.2~6.250Bacillus coagulans LA1507111.000.4371.59[117]
    玉米秸同步糖化发酵L-乳酸酵母膏6.037Lactobacillus pentosu92.300.6601.92[118]
    厨余垃圾批式发酵乳酸和沼气6.035Streptococcus sp.35.000.3303.38[119]
    厨余垃圾批式发酵乳酸酵母膏6.035Streptococcus sp.66.500.8102.16[120]
    废纸和污泥批式发酵乳酸5.537Lactobacillus rhamnosus ATCC746973.000.9702.90[121]
    咖啡液批式发酵L-乳酸酵母膏6.052Bacillus coagulans45.300.7704.40[122]
    小麦麸批式发酵乳酸6.330Lactobacillus pentosus DSM2031418.600.7300.30[122]
    马铃薯粉批式发酵L-乳酸酵母膏7.060Geobacillus stearothermophilus DSM49436.620.6601.80[123]
    木薯废弃批式发酵D-乳酸酵母膏6.537Lactobacillus delbrueckiidelbrueckii NBRC 320216.150.5000.90[124]
    基质方法产物氮源pH温度/
    微生物浓度/
    (g·L−1)
    产量/
    (g·g−1)
    产率/
    (g·(L·h)−1)
    文献
    葡萄糖补料分批发酵D-乳酸花生饼粉9.042Sporolactobacillus sp. CASD226.000.8404.40[113]
    葡萄糖补料分批发酵L-乳酸花生饼粉10.045Bacillus sp. WL-S20225.000.9931.04[114]
    木糖补料分批发酵L-乳酸酵母膏6.050Bacilus coagulans C106215.700.9504.00[115]
    预处理玉米芯同步糖化发酵L-乳酸酵母膏6.050Bacillus coagulans LA204122.990.771.37[116]
    甜高粱甘蔗渣同步糖化发酵L-乳酸玉米浆干粉5.2~6.250Bacillus coagulans LA1507111.000.4371.59[117]
    玉米秸同步糖化发酵L-乳酸酵母膏6.037Lactobacillus pentosu92.300.6601.92[118]
    厨余垃圾批式发酵乳酸和沼气6.035Streptococcus sp.35.000.3303.38[119]
    厨余垃圾批式发酵乳酸酵母膏6.035Streptococcus sp.66.500.8102.16[120]
    废纸和污泥批式发酵乳酸5.537Lactobacillus rhamnosus ATCC746973.000.9702.90[121]
    咖啡液批式发酵L-乳酸酵母膏6.052Bacillus coagulans45.300.7704.40[122]
    小麦麸批式发酵乳酸6.330Lactobacillus pentosus DSM2031418.600.7300.30[122]
    马铃薯粉批式发酵L-乳酸酵母膏7.060Geobacillus stearothermophilus DSM49436.620.6601.80[123]
    木薯废弃批式发酵D-乳酸酵母膏6.537Lactobacillus delbrueckiidelbrueckii NBRC 320216.150.5000.90[124]
    下载: 导出CSV

    表 5  提高脂肪酸产量的最优条件

    Table 5.  Optimal conditions for promoting VFAs production

    底物参数最优条件文献
    污泥温度高温(50~60 ℃)[143]
    中温(30~40 ℃)
    低温(5~30 ℃)
    污泥pH酸化菌(7.0~11.0)[144-146]
    产甲烷菌(6.6~7.5)
    秸秆和牛粪HRT37 ℃时4 d[147]
    生活垃圾HRT35 ℃时 8 d[148]
    果蔬垃圾HRT2 d[149]
    蛋白质氢分压0.02 MPa[150]
    底物参数最优条件文献
    污泥温度高温(50~60 ℃)[143]
    中温(30~40 ℃)
    低温(5~30 ℃)
    污泥pH酸化菌(7.0~11.0)[144-146]
    产甲烷菌(6.6~7.5)
    秸秆和牛粪HRT37 ℃时4 d[147]
    生活垃圾HRT35 ℃时 8 d[148]
    果蔬垃圾HRT2 d[149]
    蛋白质氢分压0.02 MPa[150]
    下载: 导出CSV

    表 6  混菌条件丙酸转化现状

    Table 6.  Conversion of propionic acid under mixed condition

    反应器底物pH温度/℃丙酸质量浓度/(g·L−1)甲烷最大产量/(g·L−1)丙酸影响文献
    全流式富甲烷菌污泥6.5~8.0371.4852.16抑制[154]
    序批式生活垃圾与纸张废料混合3721.6011.36抑制[158]
    序批式厨房与园艺废料混合8.0~8.34214.002.54[162]
    序批式生活垃圾处理污水7.04015.80[163]
    反应器底物pH温度/℃丙酸质量浓度/(g·L−1)甲烷最大产量/(g·L−1)丙酸影响文献
    全流式富甲烷菌污泥6.5~8.0371.4852.16抑制[154]
    序批式生活垃圾与纸张废料混合3721.6011.36抑制[158]
    序批式厨房与园艺废料混合8.0~8.34214.002.54[162]
    序批式生活垃圾处理污水7.04015.80[163]
    下载: 导出CSV
  • [1] 中国政府网. 中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见[EB/OL]. [2021-01-04]. http://www.moa.gov.cn/hd/zbft_news/xczxnyncxdh/xgxw/202102/t20210222_6361921.htm.
    [2] 中国政府网. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2021-03-12]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
    [3] ZHENG M, LI L, LI X, et al. The effects of alkaline pretreatment parameters on anaerobic biogasification of corn stover[J]. Energy Sources, 2010, 32(17/18/19/20): 1918-1925.
    [4] ZHENG X, LIU Y, HUANG J, et al. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110457. doi: 10.1016/j.ecoenv.2020.110457
    [5] WANG L, SHEN F, YUAN H, et al. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies[J]. Waste Management, 2014, 34(12): 2627-2633. doi: 10.1016/j.wasman.2014.08.005
    [6] CHEN Y, LUO J, YAN Y, et al. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells[J]. Applied Energy, 2013, 102: 1197-1204. doi: 10.1016/j.apenergy.2012.06.056
    [7] 李伟, 蔺树生, 谭豫之, 等. 作物秸秆综合利用的创新技术[J]. 农业工程学报, 2000, 16(1): 14-17. doi: 10.3321/j.issn:1002-6819.2000.01.008
    [8] MA X, HU J, WANG X, et al. An integrated strategy for the utilization of rice straw: Production of plant growth promoter followed by ethanol fermentation[J]. Process Safety and Environmental Protection, 2019, 129: 1-7. doi: 10.1016/j.psep.2019.06.004
    [9] KIM N J, PARK G W, KANG J, et al. Volatile fatty acid production from lignocellulosic biomass by lime pretreatment and its applications to industrial biotechnology[J]. Biotechnology & Bioprocess Engineering, 2013, 18(6): 1163-1168.
    [10] PALMQVIST E, HAHN-HAGERDAL B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification[J]. Bioresource Technology, 2000, 74(1): 17-24. doi: 10.1016/S0960-8524(99)00160-1
    [11] QIANG H, WANG F, DING J, et al. Co-digestion of swine manure and corn stalks with biochar as an effective promoter: An optimization study using response surface methodology[J]. Fuel, 2020, 268: 117395. doi: 10.1016/j.fuel.2020.117395
    [12] WANG S, SUN X, YUAN Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review[J]. Bioresource Technology, 2018, 258: 302-309. doi: 10.1016/j.biortech.2018.03.064
    [13] XING B S, HAN Y, WANG X C, et al. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation[J]. Science of the Total Environment, 2020, 715: 136529. doi: 10.1016/j.scitotenv.2020.136529
    [14] WU J, HU Y Y, WANG S F, et al. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis[J]. Waste Management, 2017, 62: 69-75. doi: 10.1016/j.wasman.2017.02.022
    [15] 张田, 卜美东, 耿维. 中国畜禽粪便污染现状及产沼气潜力[J]. 生态学杂志, 2012, 31(5): 1241-1249.
    [16] PARANHOS A G D O, ADARME O F H, BARRETO G F, et al. Methane production by co-digestion of poultry manure and lignocellulosic biomass: Kinetic and energy assessment[J]. Bioresource Technology, 2020, 300: 122588. doi: 10.1016/j.biortech.2019.122588
    [17] LI R, DUAN N, ZHANG Y, et al. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement[J]. Waste Management, 2017, 70: 247-254. doi: 10.1016/j.wasman.2017.09.016
    [18] BONG C P C, LIM L Y, LEE C T, et al. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion: A review[J]. Journal of Cleaner Production, 2018, 172: 1545-1558. doi: 10.1016/j.jclepro.2017.10.199
    [19] KIM S H, SHIN HS. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste[J]. International Journal of Hydrogen Energy, 2008, 33(19): 5266-5274.
    [20] KIM H J, KIM S H, CHOI Y G, et al. Effect of enzymatic pretreatment on acid fermentation of food waste[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(6): 974-980.
    [21] YIN J, YU X, WANG K, et al. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21713-21720. doi: 10.1016/j.ijhydene.2016.07.094
    [22] WANG K, YIN J, SHEN D, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH[J]. Bioresource Technology, 2014, 161: 395-401. doi: 10.1016/j.biortech.2014.03.088
    [23] LI X, CHEN Y, ZHAO S, et al. Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA[J]. Biochemical Engineering Journal, 2014, 84: 28-35. doi: 10.1016/j.bej.2013.12.020
    [24] YIN J, WANG K, YANG Y, et al. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment[J]. Bioresource Technology, 2014, 171: 323-329. doi: 10.1016/j.biortech.2014.08.062
    [25] YIN J, YU X, ZHANG Y, et al. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum[J]. Bioresource Technology, 2016, 216: 996-1003. doi: 10.1016/j.biortech.2016.06.053
    [26] 马娜, 陈玲, 熊飞. 我国城市污泥的处置与利用[J]. 生态环境学报, 2003, 12(1): 92-95. doi: 10.3969/j.issn.1674-5906.2003.01.023
    [27] KIM S H, HAN S K, SHIN H S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge[J]. International Journal of Hydrogen Energy, 2004, 29(15): 1607-1616. doi: 10.1016/j.ijhydene.2004.02.018
    [28] ZHANG D, CHEN Y, ZHAO Y, et al. New sludge pretreatment method to improve methane production in waste activated sludge digestion[J]. Environmental Science & Technology, 2010, 44(12): 4802-4808.
    [29] WONG M T, ZHANG D, LI J, et al. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment[J]. Biotechnology for Biofuels, 2013, 6(1): 38. doi: 10.1186/1754-6834-6-38
    [30] FENG L, CHEN Y, YUAN H, et al. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions[J]. Journal of Biotechnology, 2008, 136: S106.
    [31] SRAVAN J S, BUTTI S K, SARKAR O, et al. Electrofermentation of food waste: Regulating acidogenesis towards enhanced fatty acids production[J]. Chemical Engineering Journal, 2018, 334: 1709-1718. doi: 10.1016/j.cej.2017.11.005
    [32] 任南琪. 产酸发酵微生物生理生态学[M]. 北京: 科学出版社, 2005: 20-50.
    [33] ZHANG S, LIU M, CHEN Y, et al. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration[J]. Bioresource Technology, 2017, 224: 349-357. doi: 10.1016/j.biortech.2016.11.096
    [34] MÜLLER N, WORM P, SCHINK B, et al. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms[J]. Environmental Microbiology Reports, 2010, 2(4): 489-499.
    [35] BENSAID S, RUGGERI B, SARACCO G. Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: Medium term perspectives[J]. Energies, 2015, 8(1): 399-429. doi: 10.3390/en8010399
    [36] YEN H W, LI R J, MA T W. The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum[J]. Journal of the Taiwan Insitute of Chemical Engineers, 2011, 42(6): 902-907. doi: 10.1016/j.jtice.2011.05.006
    [37] LEE H S, SALERNO M B, RITTMANN B E. Thermodynamic evaluation on H2 production in glucose fermentation[J]. Environmental Science & Technology, 2008, 42(7): 2401-2407.
    [38] SAADY N M C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13172-13191.
    [39] CHAGANTI S R, KIM D H, LALMAN J A. Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(21): 14141-14152. doi: 10.1016/j.ijhydene.2011.04.161
    [40] CASTILLO MARTINEZ F A, BALCIUNAS E M, SALGADO J M, et al. Lactic acid properties, applications and production: A review[J]. Trends in Food Science & Technology, 2013, 30(1): 70-83.
    [41] KLEEREBEZEM R, JOOSSE B, ROZENDAL R, et al. Anaerobic digestion without biogas?[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 787-801. doi: 10.1007/s11157-015-9374-6
    [42] LOPEZ-GARZON C S, STRAATHOF A J. Recovery of carboxylic acids produced by fermentation[J]. Biotechnology Advances, 2014, 32(5): 873-904. doi: 10.1016/j.biotechadv.2014.04.002
    [43] DIONISI D, SILVA I M O. Production of ethanol, organic acids and hydrogen: An opportunity for mixed culture biotechnology?[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(2): 213-242. doi: 10.1007/s11157-016-9393-y
    [44] ZHENG M, ZHENG M, WU Y, et al. Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes[J]. Biotechnology and Bioprocess Engineering, 2015, 20(2): 298-303. doi: 10.1007/s12257-014-0651-y
    [45] REN N Q, WANG B Z, HUANG J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J]. Biotechnology and Bioengineering, 1997, 54(5): 428-433. doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G
    [46] 吴娟娟, 徐恒. 基于pH值调控的厌氧酸化产物分布及微生物群落特征研究[J]. 中国沼气, 2018, 36(1): 3-7. doi: 10.3969/j.issn.1000-1166.2018.01.001
    [47] CHEN Y, JIANG S, YUAN H, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. doi: 10.1016/j.watres.2006.07.030
    [48] ZHANG P, CHEN Y, ZHOU Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH[J]. Water Research, 2009, 43(15): 3735-3742. doi: 10.1016/j.watres.2009.05.036
    [49] WU Y, MA H, ZHENG M, et al. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes[J]. Bioresource Technology, 2015, 191: 53-58. doi: 10.1016/j.biortech.2015.04.100
    [50] CYSEWSKI G R, WILKE C R. Process design and economic studies of alternative fermentation methods for the production of ethanol[J]. Biotechnology & Bioengineering, 1978, 20(9): 1421-1444.
    [51] 任南琪, 宋佳秀, 安东, 等. 末端产物对乙醇型发酵菌群产氢能力及代谢进程的影响[J]. 环境科学, 2006, 27(8): 1608-1612. doi: 10.3321/j.issn:0250-3301.2006.08.024
    [52] 任南琪, 刘敏, 王爱杰, 等. 两相厌氧系统中产甲烷相有机酸转化规律[J]. 环境科学, 2003, 24(4): 89-93. doi: 10.3321/j.issn:0250-3301.2003.04.017
    [53] ZHENG M Y, ZHENG M X, WANG K J, et al. Start-up strategy to achieve excellent efficiency of degradation acetate, ethanol and propionate in UASB[J]. Applied Mechanics and Materials, 2011, 71-78: 2103-2106. doi: 10.4028/www.scientific.net/AMM.71-78.2103
    [54] SUN J, KOSAKI Y, WATANABE N. Higher load operation by adoption of ethanol fermentation pretreatment on methane fermentation of food waste[J]. Bioresource Technology, 2020, 297: 122475. doi: 10.1016/j.biortech.2019.122475
    [55] 任南琪, 秦智, 李建政. 不同产酸发酵菌群产氢能力的对比与分析[J]. 环境科学, 2003, 24(1): 70-74. doi: 10.3321/j.issn:0250-3301.2003.01.011
    [56] 王勇, 任南琪, 孙寓姣, 等. 乙醇型发酵与丁酸型发酵产氢机理及能力分析[J]. 太阳能学报, 2002, 23(3): 366-373. doi: 10.3321/j.issn:0254-0096.2002.03.021
    [57] 宫曼丽, 任南琪, 李永峰, 等. 生物制氢反应器不同发酵类型产氢能力的比较[J]. 哈尔滨工业大学学报, 2006, 38(11): 1826-1830. doi: 10.3321/j.issn:0367-6234.2006.11.003
    [58] GUPTA A, VERMA J P. Sustainable bio-ethanol production from agro-residues: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 550-567. doi: 10.1016/j.rser.2014.08.032
    [59] NOVAK M, STREHAIANO P M M, GOMA G, et al. Alcoholic fermentation on the inhibitory effect of ethanol[J]. Biotechnology & Bioengineering, 1981, 23(1): 201-211.
    [60] 李建政, 任南琪, 秦智, 等. 产酸相反应器快速启动和乙醇型发酵菌群驯化[J]. 哈尔滨工业大学学报, 2002, 34(5): 591-594. doi: 10.3321/j.issn:0367-6234.2002.05.002
    [61] 刘敏, 任南琪, 丁杰, 等. 糖蜜、淀粉与乳品废水厌氧发酵法生物制氢[J]. 环境科学, 2004, 25(5): 65-69. doi: 10.3321/j.issn:0250-3301.2004.05.014
    [62] 王旭, 郑明霞, 晏钰. 纤维素不同途径水解酸化效果对比研究[J]. 环境科学与技术, 2012, 35(11): 116-120. doi: 10.3969/j.issn.1003-6504.2012.11.025
    [63] 王勇, 孙寓姣, 任南琪, 等. C/N对细菌产氢发酵类型及产氢能力的影响[J]. 太阳能学报, 2004, 25(3): 375-378. doi: 10.3321/j.issn:0254-0096.2004.03.023
    [64] 李永峰, 万松, 焦安英, 等. 乙醇型发酵法生物制氢中COD浓度变化对发酵厌氧活性污泥产氢系统的影响[J]. 现代化工, 2009, 29(9): 37-39. doi: 10.3321/j.issn:0253-4320.2009.09.008
    [65] 韩丹, 郑明月, 王凯军. 高负荷条件下pH调控对厌氧发酵产酸的影响[J]. 环境卫生工程, 2017, 25(4): 58-62.
    [66] TEMUDO M F, KLEEREBEZEM R, VAN LOOSDRECHT M. Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study[J]. Biotechnology and Bioengineering, 2007, 98(1): 69-79. doi: 10.1002/bit.21412
    [67] HWANG M H, JANG N J, HYUN S H, et al. Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH[J]. Journal of Biotechnology, 2004, 111(3): 297-309. doi: 10.1016/j.jbiotec.2004.04.024
    [68] 林明, 任南琪, 王爱杰, 等. 几种金属离子对高效产氢细菌产氢能力的促进作用[J]. 哈尔滨工业大学学报, 2003, 35(2): 147-151. doi: 10.3321/j.issn:0367-6234.2003.02.005
    [69] 王勇, 任南琪, 孙寓姣. Fe对产氢发酵细菌发酵途径及产氢能力影响[J]. 太阳能学报, 2003, 24(2): 20-24.
    [70] SZCZODRAK J, FIEDUREK J. Technology for conversion of lignocellulosic biomass to ethanol[J]. Biomass and Bioenergy, 1996, 10(5): 367-375.
    [71] NEVES M, KIMURA T, SHIMIZU N, et al. State of the art and future trends of bioethanol production[J]. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 2007, 1: 1-14.
    [72] PANDEY A, SOCCOL C R, NIGAM P, et al. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse[J]. Bioresource Technology, 2000, 74(1): 69-80. doi: 10.1016/S0960-8524(99)00142-X
    [73] LI J, AI B, REN N Q. Effect of initial sludge loading rate on the formation of ethanol type fermentation for hydrogen production in a continuous stirred-tank reactor[J]. Environmental Progress & Sustainable Energy, 2013, 32(4): 1271-1279.
    [74] 郑明月, 郑明霞, 王凯军, 等. 温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源, 2012, 30(4): 75-79.
    [75] WU Y Y, WANG K J, ZHENG M Y, et al. Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste[J]. Waste Management, 2017, 60: 158-163. doi: 10.1016/j.wasman.2016.09.033
    [76] 李永峰, 吕云汉, 李巧燕, 等. 低pH值下上流式厌氧污泥床反应器(UASB)以糖蜜为底物制取高纯度氢气[J]. 环境化学, 2016, 35(4): 810-816. doi: 10.7524/j.issn.0254-6108.2016.04.2015110501
    [77] LIU Y, HAN W, XU X, et al. Ethanol production from waste pizza by enzymatic hydrolysis and fermentation[J]. Biochemical Engineering Journal, 2020, 156: 107528. doi: 10.1016/j.bej.2020.107528
    [78] COHEN A, GEMERT J M, ZOETEMEYER R J, et al. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters[J]. Process Biochemistry, 1984, 19: 228-232.
    [79] HE M, SUN Y, ZOU D, et al. Influence of temperature on hydrolysis acidification of food waste[J]. Procedia Environmental Sciences, 2012, 16: 85-94. doi: 10.1016/j.proenv.2012.10.012
    [80] 宫曼丽, 任南琪, 邢德峰. 丁酸型发酵生物制氢反应器的运行特性研究[J]. 环境科学学报, 2005, 25(2): 275-2782. doi: 10.3321/j.issn:0253-2468.2005.02.026
    [81] GANIGUÉ R, PUIG S, BATLLE-VILANOVA P, et al. Microbial electrosynthesis of butyrate from carbon dioxide[J]. Chemical Communications, 2015, 51(15): 3235-3238. doi: 10.1039/C4CC10121A
    [82] MARANG L, JIANG Y, VAN LOOSDRECHT M C, et al. Butyrate as preferred substrate for polyhydroxybutyrate production[J]. Bioresource Technology, 2013, 142(4): 232-239.
    [83] PHILIP S, KESHAVARZ T, ROY I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications[J]Journal of Chemical Technology & Biotechnology, 2007, 82(3): 233-247.
    [84] 贾璇. 典型农业废弃物干式厌氧发酵产氢影响因素的研究[J]. 环境污染与防治, 2020, 42(2): 133.
    [85] 任洪艳, 吕娴, 阮文权. 提高太湖蓝藻厌氧发酵产丁酸的预处理方法[J]. 食品与生物技术学报, 2011, 30(5): 734-739.
    [86] ROE A J, MCLAGGAN D, DAVIDSON I, et al. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids[J]. Journal of Bacteriology, 1998, 180(4): 767-772. doi: 10.1128/JB.180.4.767-772.1998
    [87] FANG H H P, HONG L. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technology, 2002, 82(1): 87-93.
    [88] KIM D H, KIM S H, JUNG K W, et al. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste[J]. Bioresource Technology, 2011, 102(18): 8646-8652. doi: 10.1016/j.biortech.2011.03.030
    [89] JIANG J, ZHANG Y, LI K, et al. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate[J]. Bioresource Technology, 2013, 143: 525-530. doi: 10.1016/j.biortech.2013.06.025
    [90] LI Y, SU D, FENG H, et al. Anaerobic acidogenic fermentation of food waste for mixed-acid production[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(7): 631-635. doi: 10.1080/15567036.2015.1120824
    [91] 李建政, 于泽, 昌盛, 等. CSTR和ACR丁酸型发酵制氢系统的运行特性比较[J]. 化工学报, 2012, 63(5): 1551-1557. doi: 10.3969/j.issn.0438-1157.2012.05.033
    [92] VALDEZ-VAZQUEZ I, RIOS-LEAL E, NEZ A M, et al. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace[J]. Environmental Science & Technology, 2006, 40(10): 3409-3415.
    [93] NIE Y Q, HE L, DU G C, et al. Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process[J]. Process Biochemistry, 2007, 42(4): 599-605. doi: 10.1016/j.procbio.2006.11.007
    [94] KIM D H, HAN S K, KIM S H, et al. Effect of gas sparging on continuous fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2158-2169. doi: 10.1016/j.ijhydene.2006.02.012
    [95] TAHERDANAK M, ZILOUEI H, KARIMI K. Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12956-12963. doi: 10.1016/j.ijhydene.2015.08.004
    [96] BECKERS L, HILIGSMANN S, STÉPHANIE D L, et al. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum[J]. Bioresource Technology, 2013, 133(2): 109-117.
    [97] ZHAO W, ZHANG Y, DU B, et al. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria[J]. Bioresource Technology, 2013, 142: 240-245. doi: 10.1016/j.biortech.2013.05.042
    [98] 张晓阳, 卢忆, 马艳莉, 等. 丁酸梭菌生理功能及应用研究进展[J]. 中国食物与营养, 2012, 18(12): 31-35. doi: 10.3969/j.issn.1006-9577.2012.12.007
    [99] 陈雪, 袁海荣, 邹德勋, 等. 餐厨垃圾和稻草两相厌氧发酵及其动力学[J]. 环境工程学报, 2015, 9(5): 2405-2411. doi: 10.12030/j.cjee.20150561
    [100] 赵兴丽. 氢分压对有机废水发酵产氢过程的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [101] FU H, YU L, LIN M, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose[J]. Metabolic Engineering, 2017, 40: 50-58. doi: 10.1016/j.ymben.2016.12.014
    [102] CUI F, LI Y, WAN C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis[J]. Bioresource Technology, 2011, 102(2): 1831-1836. doi: 10.1016/j.biortech.2010.09.063
    [103] PANESAR P S, KENNEDY J F, GANDHI D N, et al. Bioutilisation of whey for lactic acid production[J]. Food Chemistry, 2007, 105(1): 1-14.
    [104] NGUYEN C M K J, SONG J K, CHOI G J, et al. D-Lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens[J]. Biotechnology Letters, 2012, 34(12): 2235-2240. doi: 10.1007/s10529-012-1023-3
    [105] CHEN H, MENG H, NIE Z, et al. Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes[J]. Bioresource Technology, 2013, 128: 533-538. doi: 10.1016/j.biortech.2012.10.121
    [106] CHEN H, LIU J, CHANG X, et al. A review on the pretreatment of lignocellulose for high-value chemicals[J]. Fuel Processing Technology, 2017, 160: 196-206. doi: 10.1016/j.fuproc.2016.12.007
    [107] JONSSON L J, MARTIN C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. doi: 10.1016/j.biortech.2015.10.009
    [108] HETÉNYI K, NÉMETH Á, SEVELLA B. Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement[J]. Chemical Engineering & Processing Process Intensification, 2011, 50(3): 293-299.
    [109] ZHANG B, HE P J, YE N F, et al. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes[J]. Bioresource Technology, 2008, 99(4): 855-862. doi: 10.1016/j.biortech.2007.01.010
    [110] TANAKA T, HOSHINA M, TANABE S, et al. Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation[J]. Bioresource Technology, 2006, 97(2): 211-217. doi: 10.1016/j.biortech.2005.02.025
    [111] KIM M S, NA J G, LEE M K, et al. More value from food waste: Lactic acid and biogas recovery[J]. Water Research, 2016, 96: 208-216. doi: 10.1016/j.watres.2016.03.064
    [112] CALABIA B P, TOKIWA Y, AIBA S. Fermentative production of L: -(+)-lactic acid by an alkaliphilic marine microorganism[J]. Biotechnology Letters, 2011, 33(7): 1429-1433. doi: 10.1007/s10529-011-0573-0
    [113] LIU C, LUO G, WANG W, et al. The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation[J]. Fuel, 2018, 224: 537-544. doi: 10.1016/j.fuel.2018.03.125
    [114] YING M, XUE Y, BO Y, et al. Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20[J]. Bioresource Technology, 2012, 116: 334-339. doi: 10.1016/j.biortech.2012.03.103
    [115] YE L, ZHOU X, HUDARI M S B, et al. Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106[J]. Bioresource Technology, 2013, 132: 38-44. doi: 10.1016/j.biortech.2013.01.011
    [116] ZHANG Z, XIE Y, HE X, et al. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation[J]. Scientific Reports, 2016, 6: 37245. doi: 10.1038/srep37245
    [117] CHEN H, HUO W, WANG B, et al. L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw[J]. Industrial Crops and Products, 2019, 141: 111749. doi: 10.1016/j.indcrop.2019.111749
    [118] HU J, LIN Y, ZHANG Z, et al. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation[J]. Bioresource Technology, 2016, 214: 74-80. doi: 10.1016/j.biortech.2016.04.034
    [119] DEMICHELIS F, PLEISSNER D, FIORE S, et al. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues[J]. Bioresource Technology, 2017, 241: 508-516. doi: 10.1016/j.biortech.2017.05.174
    [120] PLEISSNER D, DEMICHELIS F, MARIANO S, et al. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste[J]. Journal of Cleaner Production, 2017, 143: 615-623.
    [121] DJUKIĆ-VUKOVIĆ A P, MOJOVIĆ L V, JOKIĆ B M, et al. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite[J]. Bioresource Technology, 2012, 135(2): 454-458.
    [122] NEU A K, PLEISSNER D, MEHLMANN K, et al. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production[J]. Bioresource Technology, 2016, 211: 398-405. doi: 10.1016/j.biortech.2016.03.122
    [123] SMERILLI M, NEUREITER M, HAAS C, et al. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions[J]. Journal of Chemical Technology & Biotechnology, 2015, 90: 648-657.
    [124] CINGADI S, SRIKANTH K, ARUN E V R, et al. Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid[J]. Biochemical Engineering Journal, 2015, 102: 82-90. doi: 10.1016/j.bej.2015.02.006
    [125] STORE M R. Propionic acid market for animal feed & grain preservatives, calcium & sodium propionates, cellulose acetate propionate and other applications: Global industry perspective, comprehensive analysis, size, share, growth, segment, trends and forecast 2014-2020.[M/OL]. [2020-07-01]. New York: Market Research Store, 2019. Available online: http://www.marketresearchstore.com/report/propionic-acid-market-for-animal-feed-grain-z39993.
    [126] 郑明月, 王凯军, 郑明霞, 等. 厌氧颗粒污泥反应器对丙酸和丁酸冲击负荷变化的响应研究[J]. 环境工程学报, 2011, 5(9): 1994-1998.
    [127] CHEN Y, RANDALL A A, MCCUE T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1): 27-36. doi: 10.1016/j.watres.2003.08.025
    [128] LIU Y, CHEN Y, ZHOU Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids[J]. Chemosphere, 2007, 66(1): 123-129. doi: 10.1016/j.chemosphere.2006.05.004
    [129] HUANG L, CHEN Z, XIONG D, et al. Oriented acidification of wasted activated sludge (WAS) focused on odd-carbon volatile fatty acid (VFA): Regulation strategy and microbial community dynamics[J]. Water Research, 2018, 142(1): 256-266.
    [130] BOYAVAL P, CORRE C. Production of propionic acid[J]. Diary Science & Technology, 1995, 75(4): 453-461.
    [131] KIM H J, CHOI Y G, KIM D Y, et al. Effect of pretreatment on acid fermentation of organic solid waste[J]. Water Science Technology, 2005, 52(1/2): 153-160. doi: 10.2166/wst.2005.0511
    [132] YAN B H, SELVAM A, XU S Y, et al. A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis[J]. Bioresource Technology, 2014, 159: 249-257. doi: 10.1016/j.biortech.2014.02.014
    [133] STEINBUSCH K J J, ARVANITI E, HAMELERS H V M, et al. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation[J]. Bioresource Technology, 2009, 100(13): 3261-3267. doi: 10.1016/j.biortech.2009.01.049
    [134] RAGO L, GUERRERO J, BAEZA J A, et al. 2-Bromoethanesulfonate degradation in bioelectrochemical systems[J]. Bioelectrochemistry, 2015, 105: 44-49. doi: 10.1016/j.bioelechem.2015.05.001
    [135] HAN S K, SHIN H S. Enhanced acidogenic fermentation of food waste in a continuous-flow reactor[J]. Waste Management & Research, 2002, 20(2): 110-118.
    [136] 赵振焕, 金春姬, 张鹏, 等. 酵母菌对厨余垃圾厌氧发酵产乙酸的影响[J]. 环境工程学报, 2009, 3(10): 1885-1888.
    [137] HE L, JIN W, LIU X L, et al. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH[J]. Water Research, 2012, 46(3): 799-807. doi: 10.1016/j.watres.2011.11.047
    [138] 张波, 史红钻, 张丽丽, 等. pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J]. 环境科学学报, 2005, 25(5): 665-669. doi: 10.3321/j.issn:0253-2468.2005.05.017
    [139] 赵杰红, 张波, 蔡伟民. 温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J]. 环境科学, 2006, 27(8): 1682-1686. doi: 10.3321/j.issn:0250-3301.2006.08.038
    [140] YUAN Q, SPARLING R, OLESZKIEWICZ J. VFA generation from waste activated sludge: Effect of temperature and mixing[J]. Chemosphere, 2011, 82(4): 603-607. doi: 10.1016/j.chemosphere.2010.10.084
    [141] SHI J, WANG Z, STIVERSON J A, et al. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions[J]. Bioresource Technology, 2013, 136: 574-581. doi: 10.1016/j.biortech.2013.02.073
    [142] BENGTSSON S, HALLQUIST J, WERKER H A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004
    [143] HO D. A high-rate high temperature anaerobic digestion system for sludge treatment[D]. St Lucia: The University of Queensland, 2014.
    [144] MASPOLIM Y, ZHOU Y, GUO C H, et al. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation[J]. Bioresource Technology, 2015, 190: 289-298. doi: 10.1016/j.biortech.2015.04.087
    [145] ZHAO J W, WANG D B, LIU Y W, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249: 431-438. doi: 10.1016/j.biortech.2017.10.050
    [146] YUAN H, CHEN Y, ZHANG H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025-2029.
    [147] CAVINATO C, DA ROS C, PAVAN P, et al. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage[J]. Bioresource Technology, 2017, 223: 59-64. doi: 10.1016/j.biortech.2016.10.041
    [148] LIM S J, KIM B J, JEONG C M, et al. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor[J]. Bioresource Technology, 2008, 99(16): 7866-7874. doi: 10.1016/j.biortech.2007.06.028
    [149] DINSDALE R M, PREMIER G C, HAWKES F R, et al. Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters[J]. Bioresource Technology, 2000, 72(2): 159-168. doi: 10.1016/S0960-8524(99)00105-4
    [150] LI L, WANG Y, LI Y. Effects of substrate concentration, hydraulic retention time and headspace pressure on acid production of protein by anaerobic fermentation[J]. Bioresource Technology, 2019, 283: 106-111. doi: 10.1016/j.biortech.2019.03.027
    [151] MIN K S, KHAN A R, KWON M K, et al. Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(8): 909-915.
    [152] DAHIYA S, SARKAR O, SWAMY Y V, et al. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J]. Bioresource Technology, 2015, 182: 103-113. doi: 10.1016/j.biortech.2015.01.007
    [153] MÖSCHE M, JÖRDENING H J. Detection of very low saturation constants in anaerobic digestion: Influences of calcium carbonate precipitation and pH[J]. Applied Microbiology and Biotechnology, 1998, 49(6): 793-799. doi: 10.1007/s002530051248
    [154] BARREDO M S, EVISON L M. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values[J]. Applied and Environmental Microbiology, 1991, 57(6): 1764-1769. doi: 10.1128/AEM.57.6.1764-1769.1991
    [155] 任南琪, 赵丹, 陈晓蕾, 等. 厌氧生物处理丙酸产生和积累的原因及控制对策[J]. 中国科学, 2002, 32(1): 83-89.
    [156] LUO J, FENG L, ZHANG W, et al. Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature[J]. Applied Energy, 2014, 113: 51-58. doi: 10.1016/j.apenergy.2013.07.006
    [157] GARCIA-AGUIRRE J, AYMERICH E, GONZALEZ-MTNEZ DE G, et al. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence[J]. Bioresource Technology, 2017, 244: 1081-1088. doi: 10.1016/j.biortech.2017.07.187
    [158] CAPSON-TOJO G, RUIZA D, ROUEZB M, et al. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste[J]. Bioresource Technology, 2017, 245: 724-733. doi: 10.1016/j.biortech.2017.08.149
    [159] ZHANG L, LEE Y W, JAHNG D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements[J]. Bioresource Technology, 2011, 102(8): 5048-5059. doi: 10.1016/j.biortech.2011.01.082
    [160] BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135. doi: 10.1016/j.biortech.2011.10.068
    [161] MA J X, MUNGONI L J, VERSTRAETE W, et al. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation[J]. Bioresource Technology, 2009, 100(14): 3477-3482. doi: 10.1016/j.biortech.2009.02.060
    [162] BANKS C J, CHESSHIRE M, HEAVEN S, et al. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance[J]. Bioresource Technology, 2011, 102(2): 612-620. doi: 10.1016/j.biortech.2010.08.005
    [163] KIM M D, SONG M, JO M, et al. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1611-1618. doi: 10.1007/s00253-009-2316-x
    [164] LI Z, QIN W, DAI Y. Liquid-Liquid equilibria of acetic, propionic, butyric, and valeric acids with trioctylamine as extractant[J]. Journal of Chemical & Engineering Data, 2002, 47(4): 843-848.
    [165] OZADALI F, GLATZ B A, GLATZ C E. Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production by Propionibacterium acidipropionici[J]. Applied Microbiology and Biotechnology, 1996, 44(6): 710-716.
    [166] ZHU Y, LI J, TAN M, et al. Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source[J]. Bioresource Technology, 2010, 101(22): 8902-8906. doi: 10.1016/j.biortech.2010.06.070
    [167] LIU Z, GE Y, XU J, et al. Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici[J]. Bioresource Technology, 2016, 216: 856-861. doi: 10.1016/j.biortech.2016.06.023
    [168] YANG H, WANG Z, LIN M, et al. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis[J]. Bioresource Technology, 2018, 250: 1-9. doi: 10.1016/j.biortech.2017.11.016
    [169] CHOUBISA B, PATEL H, PATEL M, et al. Microbial production of lactic acid by using crude glycerol from biodiesel[J]. Journal of Microbiology & Biotechnology Research, 2017, 2(1): 90-93.
    [170] HAHNKE S, LANGER T, KOECK D E, et al. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1466-1475. doi: 10.1099/ijsem.0.000902
    [171] CIBIS K G, GNEIPEL A, KÖNIG H. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants[J]. Journal of Biotechnology, 2016, 220(20): 51-63.
    [172] EATON D C, GABELMAN A. Fed-batch and continuous fermentation of Selenomonas ruminantium for natural propionic, acetic and succinic acids[J]. Journal of Industry Microbiology, 1995, 15(1): 32-38. doi: 10.1007/BF01570010
    [173] FENG X, CHEN F, XU H, et al. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor[J]. Bioresource Technology, 2011, 102(10): 6141-6146. doi: 10.1016/j.biortech.2011.02.087
  • 加载中
图( 3) 表( 6)
计量
  • 文章访问数:  8454
  • HTML全文浏览数:  8454
  • PDF下载数:  177
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-04
  • 录用日期:  2020-10-10
  • 刊出日期:  2021-06-10

有机固废厌氧发酵产物的转化制备与应用进展

    通讯作者: 王凯军, E-mail: wkj@mail.tsinghua.edu.cn
    作者简介: 王凯军(1960—),男,博士,教授。研究方向:水污染控制和资源化。E-mail:wkj@mail.tsinghua.edu.cn
  • 清华大学环境学院,环境模拟与污染控制国家重点实验室,北京 100084
基金项目:
北京市科技计划项目(Z181100002418019)

摘要: 有机固废的高效转化和循环利用对解决全球环境污染、能源短缺和资源缺乏等共性问题具有积极作用。采用厌氧发酵技术高效处理有机固废,可合成制备出不同酸化产物,并促进酸化产品的加工应用。在文献及工程调研的基础上,梳理了有机固废厌氧酸化发酵的不同代谢途径,分析了不同酸化产物的经济性及工程化应用现状。以发酵产物乙醇、乳酸、丙酸和丁酸等为代表,分析了酸化产品的制备及应用状况。采用系列宏观与微观的调控手段,可促进酸化发酵目标产物的代谢转化,并实现有机固废酸化发酵脂肪酸类产物的高效合成,从而为发酵脂肪酸类产品的制备生产和加工应用提供参考。

English Abstract

  • 近年来,有机固废(作物秸秆、畜禽粪便、生活垃圾和城市污泥等农林和城市生活废弃物)的产生量迅速增长。将农林废弃物和生活废弃物进行处理,使之实现无害化、资源化利用的思路符合可持续和循环利用的发展原则。热解、气化和厌氧发酵等有机生物质处理技术可实现有机固废的高效处理,为发展低碳经济和替换清洁能源提供出路[1-2]。现有处理工艺中,有机固废的厌氧发酵处理与填埋、焚烧等处理工艺相比,具有集中高效、环境友好的优点。厌氧发酵产物的合成制备和加工应用具有大规模发展的潜力,其市场需求也在大幅增长。

    本文总结了有机固废厌氧发酵技术的发展现状,分析了不同发酵代谢类型的转化途径,针对不同发酵目标产物的制备过程,梳理了各类产物的高值应用前景及制备中的影响因素,并提出有机固废厌氧发酵评价参数应由产物总体产量转向产物目标组分,以期实现有机固废的利用朝着高效资源化转化和发酵脂肪酸产品高值工业化生产的方向发展。

  • 有机固废厌氧发酵技术具有底物特异性,可分为干式发酵和湿式发酵。其中,干式发酵法主要应用于秸秆、畜禽粪便等农林废弃物的处理,湿式发酵法则适用于生活垃圾和市政污泥等的处理。 有机固废可通过发酵转化为挥发性脂肪酸(volatile fatty acids,VFAs)、醇类物质和气体产物(如甲烷、氢气等),实现大分子物质的降解和小分子物质的重组。典型农林和城市有机固废主要成分见表1。由于物理性质、化学性质和微生物组成之间的差异,不同有机固废的预处理工艺、发酵过程调控和发酵产物组成亦不同。。

    我国秸秆年总产量大于7×109 t。秸秆的有机成分以纤维素、半纤维素为主[7]。木质纤维素生物质经厌氧发酵处理生成可再生生物燃料[8],如甲烷和生物乙醇等。秸秆厌氧发酵处理中存在木质纤维素类物质水解程度低、微量元素含量低和产物毒性抑制等问题。很多研究者通过优化预处理工艺[9-10]、畜禽粪便共发酵[11]、改良微生物基因[12]和瘤胃系统模拟[13]等方法来提高秸秆类物质的发酵效率。

    畜牧业会产生大量富含营养物质、有机质、抗生素和重金属的畜禽粪便。近年来,畜禽粪便中抗生素和重金属的去除与生物养分的回收技术已成为研究重点[14]。2009年,中国畜禽养殖业粪便排放总量(鲜重)为3.264×1010 t,产沼气潜力约为1.2×1012 m3,其发酵产物可作为肥料出售[15]。为解决畜禽粪便含氮量高、碳氮比低、挥发性脂肪酸浓度较高的问题,将畜禽粪便与秸秆类[11, 16]、微藻类[17]生物质进行共发酵,可以平衡物料中营养元素的比例。

    生活垃圾主要由餐厨垃圾构成,其主要成分为碳水化合物(11.8%~74%)、蛋白质(13.8%~18.1%)和油脂(3.78%~33.72%)[18],是有机资源与能量回收的理想原料,也是生物精炼工业的主要原料。我国餐厨垃圾处理领域的主流处理方法为厌氧发酵技术,处理量占80%。在预处理阶段,采用破碎、搅拌等物理方法先实现生活垃圾的均质处理,再通过碱处理[19]或酶法[20]等化学和生物手段提高其水解速率。在生活垃圾的厌氧发酵处理中,碳水化合物最易被降解,主要转化为丁酸产物;其次为蛋白质,其代谢产物为乙酸;最难降解的油脂主要被转化为丙酸[21]。生活垃圾的厌氧发酵处理难点主要是垃圾成分不稳定[22]和成分发酵效率低[23]。通过优化预处理方法[24]、接种微生物[23]和环境调控[25]等方法可改善并提高生活垃圾发酵状况与产率。

    城市活性污泥是城市污水处理系统产生的有机固废。我国每年污泥产量约10×109 t[26],其主流处理方式为填埋、焚烧和厌氧消化。碳水化合物和蛋白质是城市污泥的主要有机成分,富含微生物,可作为发酵工艺的底物和接种物[27],诱导其他有机质或自身进行厌氧发酵。已有研究人员[28-30]提出污泥碱性发酵概念,即在碱性条件下,污泥水解率和短链脂肪酸累积浓度提高,能较好地实现碳资源的转化。

    有机固废的发酵工艺还有共发酵[6]、电发酵[31]等。这些工艺可提高电子转移速率和能量传递效率,整体提升发酵效果。纯质有机物转化为不同挥发性脂肪酸的路径已得到深入研究[32],但由于有机固废的实际成分十分复杂,不同条件下的具体代谢通路还未研究透彻。

  • 酸化发酵是由系列不同酶催化反应组成的生化过程。厌氧消化系统中存在不同的酸化代谢途径,对系统性能和资源回收均有重要影响。在酸化发酵代谢网中,丙酮酸是关键控制产物,并可转变为多种代谢终端产物,如乙酸、丙酸、丁酸、乙醇、乳酸、氢气和二氧化碳等[4](见图1)。不同代谢途径中丙酮酸的转化比例取决于基质类型、环境条件和微生物群落等条件。根据产物的分布,酸化代谢途径一般可归纳为:1)乙醇型;2)丙酸型;3)丁酸型;4)乳酸型;5)混合酸型。

  • 以有机物厌氧发酵中间物乙醇为主要产物组分的代谢途径称为乙醇型发酵。该发酵反应过程中会产生氢气[33],并伴有乙酸生成。乙酸是乙醇型发酵的重要产物,可通过乙酰辅酶A途径从丙酮酸中转化而来,亦可通过乙醇或VFAs的氧化生成,如丙酸和丁酸等(见式(1)~(4))。乙醇是葡萄糖或其他有机物质发酵过程中常见产物之一(见式(5))。乙醇型发酵中乙酸与乙酰辅酶A途径中的功能酶和互养氧化密切相关[34]。大肠杆菌将丙酮酸转化为乙醇需要3个步骤,其中乙酰辅酶A和乙醛为中间体。然而,其他细菌将丙酮酸转化为乙醇仅需2个关键步骤:即丙酮酸脱羧为乙醛,乙醛再还原为乙醇[35]

    在乙醇型发酵过程中,如丙酮丁醇梭菌和拜氏梭菌这类梭菌属可降解葡萄糖产生丙酮和丁醇。这一代谢途径被称为丙酮-丁醇-乙醇型发酵[36](见式(6)~(8))。丙酮-丁醇-乙醇型发酵具有从葡萄糖到乙酰辅酶A的相同代谢途径,但此后分支为不同的途径:乙酰辅酶A除转化为乙酸和乙醇外,还转化为乙酰乙酰基辅酶A,用于生产丙酮和丁醇;拜氏梭菌属将乙酰乙酰基-辅酶A转化为丙酮或进一步转化为异丙醇;丙酮丁醇梭菌属可将乙酰乙酰基-辅酶A转化为3-羟基丁基-辅酶A,巴豆酰基-辅酶A和丁基-辅酶A产生丁醇。

  • 丙酸是有机物产酸发酵过程中的另一种常见发酵产物。以丙酸为主要产物的产酸代谢途径称为丙酸型发酵。从理论上讲,1 mol·L−1葡萄糖可以生成2 mol·L−1丙酸(见式(9))。实际上,厌氧微生物酸化发酵产生丙酸的同时还会产生乙酸(见式(10))。因此,丙酸可通过2种代谢途径产生:第1种是以乳酸为中间产物,即丙酮酸在乳酸脱氢酶的催化作用下产生乳酸,然后在丙酸脱氢酶的作用下还原成丙酸;第2种由棒状菌、丙酸杆菌和双歧杆菌等产酸细菌通过转羧酶进行循环可逆反应[37]

  • 丁酸型发酵的主要代谢产物是丁酸和乙酸,氢气是伴随产物。葡萄糖代谢产生丁酸的代谢反应见式(11)和式(12)[38]。丁酸的合成是通过丙酮酸还原和脱羧而产生(见图1),同时会消耗乙酸,其步骤为:1)丙酮酸通过丙酮酸脱氢酶转化为乙酰辅酶A;2)在巯基转移酶,3-羟基丁酰基-辅酶A脱氢酶和丁酰基辅酶A脱氢酶的催化条件下,乙酰辅酶A依次转化为乙酰乙酰辅酶A、3-羟基丁酰辅酶A和巴豆酰辅酶A中间体,最后转化为丁酰辅酶A;3)在磷酸反丁酰酶和丁酸激酶或者丁酰辅酶A转移酶和乙酸酯辅酶A转移酶催化的条件下,丁酰辅酶A转化为丁酸。在丁酸产生的过程中,会消耗2分子NADH2[39]

  • 乳酸型发酵是通过乳酸菌将葡萄糖或其他有机物质转化为乳酸的代谢途径。根据产物类型,乳酸型发酵分为同型乳酸发酵、异性乳酸发酵和双歧乳酸发酵。同型产乳酸菌主要分为2个步骤:第1个步骤称为糖酵解途径,葡萄糖转化为丙酮酸;在第2个步骤中,丙酮酸被还原态烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)还原为乳酸。同型乳酸发酵可将1 mol·L−1葡萄糖转化为2 mol·L−1乳酸(见式(13));异型乳酸发酵过程的特点是除了乳酸外,还会生成二氧化碳、乙醇和乙酸等副产品。葡萄糖降解的第一步叫做戊糖磷酸途径,会产生甘油醛-3-磷酸、乙酰-磷酸和二氧化碳。甘油醛-3-磷酸通过糖酵解转化为乳酸,而乙酰磷酸则参与糖降解途径转化为乙酸和乙醇(见式(5))。乙酸和乙醇产率比例取决于微生物对酸化过程产生的NADH及其能量需求的再氧化。异性乳酸发酵可将1 mol·L−1葡萄糖分别转化为1 mol·L−1 乳酸、二氧化碳和乙醇(见式(14));双歧乳酸发酵途径是双歧杆菌分解葡萄糖产生乳酸的另一种途径,2 mol·L−1葡萄糖分解成3 mol·L−1乙酸和2 mol·L−1乳酸(见式(15))[40]

  • 混合酸型代谢途径在有机物产酸发酵过程中非常普遍,产酸微生物可以将有机物降解为大分子的蛋白质、脂肪和碳水化合物,经过不同的代谢途径,发酵产物以乙酸、乙醇、丙酸、丁酸和戊酸等混合酸为主(见式(16))。

  • 通过环境效益及经济效益分析,厌氧发酵产沼气工艺并非最佳有机固废处理方法,而通过厌氧发酵产酸化产物工艺的回收利用价值更高[41]。因此,生物质废料的混菌厌氧发酵处理逐渐成为生化法生产VFAs的理想方式。其中,VFAs化学平台概念的提出将研究关注点转移至以获得不同发酵产物为目的的定向转化技术及条件调控方法。VFAs平台产品的生产工艺及工业、商业应用情况如图2所示。

    生物质发酵液中的不同酸化物质,经分离、吸附、去阳离子、电渗析和蒸馏等处理流程后,最终获得提纯的羧酸产品[42]。酸化产物提取工艺的选择依据是产物的物理和化学性质。然而,并不是所有的酸化产物都需要提取出来。比如,食品工业中的乙酸主要来源于乙醇氧化。这些羧酸产品可作为生物燃料、生物塑料及相关化学品的前体原料,进行进一步加工。不同发酵产物的生产规模及主要应用[43]表2

    为定向获得脂肪酸类产物,可通过调控厌氧发酵类型来提高体系内产物组分的稳定性。由于微生物合成代谢和群落结构的动态变化,厌氧发酵体系在不同操作条件下可呈现不同的发酵类型。目前,已提出的发酵类型有乙醇型、丁酸型、乳酸型、传统型(包含丙酸型)发酵。pH与不同发酵类型间具有明显的联系[44-49],不同发酵类型发酵产物模拟见图3。调控不同发酵类型以获得不同特征产物的策略已应用于工业生产。为进一步提高目标产物产量与质量,运行参数如pH、温度、有机负荷和水力停留时间(hydraulic retention time,HRT)等还在不断优化中。

  • 早在1978年,CYSEWSKI等[50]通过对生物发酵产乙醇工艺的产能预期和成本核算,认为以糖类为基质连续发酵产乙醇模式更具有未来前景。1997年,REN等[45]首次提出乙醇型发酵系统的稳定性优于丙酸型和丁酸型。乙醇型发酵的产物主要为乙醇、乙酸,并伴随大量氢气和二氧化碳生成。由于乙醇产物对分支代谢途径中丙酮酸脱氢酶的抑制作用较小[51],微生物菌群易发生混合酸型向乙醇型发酵的转换。在国家对新能源(如甲烷和氢气等清洁气体)的需求背景下,乙醇型发酵在甲烷转化速率[52-54]和发酵产氢性能上比丙酸型[55]和丁酸型发酵更具优势[56-57]。另外,利用甘蔗和玉米可制备生物乙醇燃料。巴西和美国的生物乙醇产量已占全球产量的88%[58],我国也在大力推动生物燃料乙醇的生产与使用。在生物发酵产乙醇工业中,乙醇的产能优化还需解决以下问题:1)乙醇物质对细胞的毒性抑制[59];2)水解和酸化速率对乙醇发酵的限制[43]

  • 驯化发酵的接种物一般选用微生物多样性高的启动种泥,如厌氧活性污泥和好氧活性污泥。乙醇型发酵菌群可在40 d内快速被驯化,经小试和中试验证,驯化后的系统具有良好的缓冲性能和稳定性[60]。驯化后的乙醇型发酵体系效能易受底物性质、有机负荷和反应pH环境等其他参数影响,产量研究现状见表3

    在底物性质方面,碳水化合物中能维持较好的乙醇型发酵状态的底物为葡萄糖和糖蜜,淀粉则由于其溶水性较低,进行厌氧发酵时HRT必须大于4 h[61]。多糖类物质的纤维素结构复杂,采用与酵母菌同步糖化发酵方法,可得到的乙醇最大产率为396.0 mg·g−1,转化率58.2%[62]。由于脂类和蛋白质类物质难以生物降解,转化和水解效率较低,因而不利于厌氧发酵过程的发生。王勇等[63]发现,氮源的添加会降低乙醇型发酵稳定性,这也从微生物自身合成代谢角度解释了蛋白质类物质不利于乙醇型发酵的原因。基于不同微生物间的协同机理,混合发酵碳水化合物、蛋白质和脂质类物质可明显提高酸化程度[21]

    在厌氧乙醇型发酵系统中,最适宜的有机负荷范围尚未界定。李永峰等[64]发现,在进水COD达到8 g·L−1时,乙醇产量明显减少,而丙酸产量明显增加,最终导致运行失败。韩丹等[65]发现,当乙醇型发酵系统的pH为4.0时,有机负荷(以COD计)提升至14~31 g·(L·d)−1,而乙醇的产量下降了86.5%。REN等[45]发现,在高有机负荷(以COD计)(80~90 g·(L·d)−1)和高氢分压(50 kPa)条件下,当pH稳定在4.5时,乙醇和乙酸为主要发酵产物,而丙酸产量不高。

    pH与有机负荷具有相关性,越高的有机负荷越易造成pH下降,酸性条件(pH为 4.0~4.5)更适合乙醇型发酵。酸性环境会影响NADH/NAD+平衡进而影响代谢途径[66],使微生物趋于生成中性乙醇产物是面对酸性环境的一种保护机制。HWANG等[67]在序批实验中通过调控pH从5.0降至4.5,使乙醇产率提升了约67%,提升了氢气与二氧化碳气体的产量。WU等[49]提出的乙醇(乳酸)型发酵在pH为4.0~4.5时实现,其主要产物为乳酸和乙醇,分别占酸化产物的75.3%和10%。

    另外,不同形态的金属也对细胞的生长周期和发酵状态有影响。林明等[68]认为,铁、镍和镁在发酵初期促进细胞生长作用的顺序为:Fe2+>Mg2+>Ni2+;而发酵末期Ni2+的作用强于Mg2+,且对产乙醇能力的作用顺序为:Fe2+>Mg2+>Ni2+。王勇等[69]比较了单质Fe和Fe2+的乙醇型发酵诱导和促进作用,发现单质铁具有更好的效果,可实现丁酸型发酵向乙醇型发酵的转化。

    糖发酵产乙醇的过程中,微生物的作用不容小觑。微生物如嗜热纤维梭菌(C. thermocellum)和一些真菌类红面包菌(Neurospora crassa),尖孢镰刀菌( Fusarium oxysporum)和拟青霉属(Paecilomyces) 菌属均能产乙醇,但产率较低且发酵周期较长,一般为3~12 d[70]。在混菌条件下,休哈塔假丝酵母(C. shehatae) 和酿酒酵母(S. cerevisiae)被视为糖酵解途径产乙醇的主要菌种[71]。其他微生物,如马氏酵母、念珠菌和链球菌、梭状芽孢杆菌和高温厌氧杆菌也具有利用糖发酵进行乙醇转化的可行性[72]

    目前,以糖质和淀粉质为原料进行乙醇生产的工艺较为成熟,但对谷物类、薯类和纤维类等原料进行乙醇发酵还处于试验阶段,其商业化生产仍需继续推动。以提高乙醇发酵产率、缩短发酵周期和便于工业化生产为目的,优选乙醇发酵技术,优化工艺中的原料种类、底物浓度、pH、温度和菌剂加量等参数,构建与应用高效乙醇发酵工程菌,都成为生物质乙醇发酵的研究重点。将制备的乙醇产物通过蒸馏加工获得高浓度燃料乙醇,或利用微生物碳链延长技术转化为中长链脂肪酸产品具有应用前景。

  • 1984年,COHEN等[78]首次提出了丁酸型发酵并描述其反应特征。丁酸型发酵的产物主要为丁酸和乙酸,占产物总量70%以上,其中丁酸平均含量为50%。发酵中,丁酸与乙酸的大量生成具有关联性,其原因为:酸化过程中乙酸浓度的增加会伴随NADH2的大量过剩,而丁酸浓度逐渐提高又可消耗并解决NADH2过剩问题[79]。当氢分压低于0.1 hPa时,丁酸的降解自发进行,其吉布斯能小于丙酸向乙酸的转换反应,丁酸比丙酸更容易转换为乙酸[32]。丁酸型厌氧发酵过程所需氧化还原电位为−420~−350 mV[80]。目前,利用有机固废为底物进行丁酸型发酵,提高生物代谢产氢速率和纯度,可获得的最大产氢速率为2.37 m3·d−1[79]。近年来,丁酸作为食品、饲料、化妆品和制药行业的工业原料比乙酸盐更具吸引力,在保健领域的应用潜力受到关注[81]。丁酸还可用于生物合成聚羟基脂肪酸酯,是生物降解塑料的重要组成成分[82],具有应用于工业、医药及农业等领域的潜力[83]

  • 底物原料对丁酸型代谢途径影响较小。贾璇[84]以5种典型农业废弃物(猪粪、鸡粪、秸秆、餐饮垃圾和厨余垃圾)为研究对象,采用干式厌氧发酵技术对比其产氢能力。当反应在中温((35±1) ℃)、初始pH为6.0~7.0条件下进行时,5种农业废弃物干式厌氧发酵产氢的代谢途径均以丁酸型发酵为主。而pH、有机负荷、温度、接种比、反应器类型和微生物组成等条件对丁酸型发酵的影响较为明显。

    pH对丁酸型发酵影响较大。当pH为 4.0~7.0时,随着pH的增加丁酸产量明显提高,随后呈现下降趋势。在强酸性条件下,丁酸的产量最低,这可能是由于酸分子所解离出的氢离子能自由进出细胞膜,引起细胞质酸化,微生物细胞跨膜转运质子梯度降低,使依赖于pH梯度的微生物细胞放热反应和转运系统解耦,从而抑制甚至毒害微生物的生长[85-86]。而当pH为4.4~5.5是有利于丁酸型发酵进行的[87],pH为5.0时丁酸占比超过80%[22]。在pH为7.0~11.0时,丁酸产量呈现提高趋势[88],但碱性环境下丁酸的产量研究仍待深入。

    另外,温度对丁酸的产量也有较大影响。相比35、45、70 ℃,丁酸在55 ℃环境下更具合成优势[79, 89]。LI等[90]在批次实验中研究了总固体负荷、接种比和温度对生活垃圾酸化产物产量和比例的影响,在总固体负荷6%,接种比3.0的中温(37 ℃)厌氧发酵过程中,7 d即可获得最高的酸化产物浓度(18.4 g·L−1),且形成以乙酸和丁酸总体比例超过93%为特征的丁酸型发酵。反应器类型也会影响丁酸型发酵产氢性能。在控制丁酸型发酵的前提下,厌氧接触式反应器的底物酸化率、产氢速率和污泥的比产氢速率分别为44%、9 L·d−1和0.15 L·(g ·d)−1,分别是全混合式搅拌槽式反应器系统的1.62、2.05和1.15倍[91]

    氢气在反应器顶部空间的积累可能会改变微生物代谢途径中的电子流,并影响VFAs的产生,改变代谢途径,从而减少乳酸、丙酸和乙醇的产生。因此,保持低水平的顶空氢气压力对于VFAs的可持续产生至关重要[92]。降低顶空氢气压力的策略是利用同型产乙酸菌将氢气转化为乙酸,因而可提高VFAs,尤其是丁酸的回收率[93]。KIM等[94]的研究结果表明,当以丁酸为主要酸化产物的反应器中顶空充满二氧化碳时,丁酸产率可明显增加,这与较高二氧化碳分压抑制醋酸菌和产乳酸菌的活性有关。

    其他因素,如过渡金属(如铁、镍等)对丁酸代谢微生物活性有影响,可提高丁酸和氢气的产量。TAHERDANAK等[95]在淀粉发酵过程中添加37.5 mg·L−1铁和镍元素,发现丁酸和氢气产量分别比空白提高了10倍和2倍。除了铁和镍,纳米银颗粒也被证明可提高丁酸盐产率[96]。 ZHAO等[97]在浓度为1.0%葡萄糖培养基中添加0.05 g·L−1纳米银可以获得2.76 g·L−1丁酸,比空白组提高了54.2%。

    目前,产丁酸菌的厌氧微生物至少有10个属,其中有7个属已经应用于工业生产。在工业生产丁酸应用最广泛的是梭菌属菌株(Clostridium),主要包括丁酸梭菌(C. butyricum)、土丁梭菌(C. tyobutyricum )和热丁烯梭菌(C. thermobutyricum)[98]。陈雪等[99]的研究表明,以餐厨垃圾和秸秆混合原料为基质的丁酸型发酵,优势菌种主要以拟杆菌属(Bacteroidetes)和乳酸杆菌属(Lactobacillus) 为主。不同的梭状芽孢杆菌,如酪丁酸梭菌和丁酸梭菌是丁酸型发酵的代表菌株。赵兴丽[100]通过变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)手段分析丁酸型发酵的优势菌种,结果主要为丁酸梭状芽胞杆菌。经过基因改造的丁酸工程菌株则可更大程度地提升丁酸产率,如应用工程菌进行葡萄糖发酵可实现丁酸产量为37.8 g·L−1[101]。关于丁酸发酵的研究在选用廉价基料、优化发酵工艺、升级提取技术和改造生产菌株等方面已取得一定进展。

  • 1878年,LISTER J从酸败的牛乳中分离出乳酸菌,并命名为乳酸杆菌。与化学合成相比,通过发酵生产乳酸具有以下优点:底物成本低、发酵温度低、能量消耗少、环境污染较小、乳酸纯度较高;可选择性地导向乳酸的2种异构体之一或其外消旋混合物[102]。利用混菌发酵生产乳酸从而提高乳酸纯度是近年来国内外研究的热点,然而发酵条件和方法的变化,已被证明会影响微生物群落结构和乳酸的光学纯度[103],因此实际乳酸生产还是依赖于纯菌种乳酸培养与生产。目前,荷兰的Purac公司和美国的ADM公司是较大的纯菌乳酸发酵工业化生产企业[104]。乳酸是一种重要的工业原料,已广泛应用于化妆品、医药和食品等行业,并作为一种有用的单体用于化学工业中可生物降解聚合物的生产,如丙二醇、丙烯酸聚合物、聚乳酸等。不同的L和D乳酸分子异构物比例赋予了最终产物不同的物理性质,因此,对映体的纯度成为乳酸工业生产的一个关键指标[105]

  • 目前,乳酸生产工艺的技术瓶颈在于原料的预处理效果和糖化效率仍需提升。淀粉、木质纤维素等难降解生物质一般需要经过物理化学和酶降解预处理[106]来打破其坚固的化学结构。同时,在预处理木质纤维素时副产物的产生也需要考虑。这是由于副产物可能会影响发酵产量,甚至会改变细胞的代谢途径,甚至在之后的酶解和发酵过程中抑制发酵过程的进行[107]。食物垃圾具有高碳水化合物含量,适合作为乳酸生产的基质。甘油是生物柴油生产的副产品,将其用作乳酸生产的研究也已经开展。不同有机底物应用于乳酸生产的研究现状见表4

    随着pH的降低,酸性条件下H+抑制乳酸发酵的瓶颈问题也亟待解决。在纯菌乳酸培养工艺中,通过添加氢氧化钠、氢氧化钾、氢氧化钙、碳酸钙和铵溶液等中和剂[108],将发酵过程中未解离的乳酸中和,可缓解前述抑制作用,以提高发酵效果。而在混菌条件下,已有较多研究证明较低的pH更易引起乳酸发酵代谢[49]。ZHANG等[109]以厨余垃圾为原料,通过对比不同pH条件下混菌发酵产乳酸纯度,发现酸性或碱性pH条件下 (无控制pH、pH 5.0和pH 8.0) 乳酸纯度均高于中性pH条件。另一种解决酸性抑制的方式是筛选并接种适应较低pH条件的突变功能菌种。TANAKA 等[110]以100 g·L−1米糠为原料,pH保持在5.0,利用功能菌delbrueckii IFO 3202生产D-乳酸,其乳酸产率、质量浓度和光化学纯度分别为28 g·L−1、0.78 g·g−1和95%。

    乳酸杆菌是最主要的、最具多样性的产乳酸细菌,具有独特的生化和生理特性。大多数乳酸杆菌的最佳生长温度为20~45 ℃,对酸性条件(pH<5)有较高的耐受性,可选择性生产L-型或者D-型乳酸,比其他细菌具有更大的竞争优势。由于其生长速度快、产量高,故属于此属的微生物主要应用于工业生产[37]。利用同型乳酸发酵消耗碳水化合物产乳酸的微生物主要包括嗜酸乳杆菌(Lactobacillus acidophilus)、嗜淀粉乳杆菌(Lactobacillus amylophilus)、保加利亚乳杆菌(Lactobacillus bulgaricus)、瑞士乳杆菌(Lactobacillus helveticus)和唾液乳杆菌(Lactobacillus salivarius)。异型乳酸发酵代谢途径消耗碳水化合物的微生物中包括短乳杆菌(Lactobacillus brevis)、发酵乳杆菌(Lactobacillus fermenti)和罗伊氏乳杆菌(Lactobacillus brevis)[111]。使用具备较高pH和温度的耐受性的功能菌属可以减少加工过程中的浪费及管理问题,因此耐碱和耐高温的乳酸菌属是乳酸发酵的研究热点。CALABIA等[112]从pH 9.0的海洋环境中分离出一株嗜盐碱性菌株(Halolactibacillus halophilus),该菌L-乳酸量为65.8 g·L−1。该工艺可以使得石油基聚合物聚乳酸生产更具有成本竞争力。

    目前,具有工业应用前景的用于制备乳酸的菌种是米根霉,而细菌类菌种和混菌条件下的乳酸发酵技术因其产物纯度较低和发酵条件复杂等问题未能实现产业化应用。以下4大研究内容可推动乳酸发酵液的连续获得和提取利用:1)利用有机固废中生物质废料进行发酵降低乳酸生产成本;2)优化发酵过程中pH,以控制乳酸产品的构型;3)研发新型原位提取设备,以提高乳酸产品的纯度;4)构建高效乳酸工程菌株,以缩短发酵工序及周期。

  • 传统型发酵可涵盖混合酸型发酵和丙酸型发酵。一般在混合酸型发酵中,丁酸产物占比为70%,乙酸和丙酸各占25%和15%,同时产生氢气和二氧化碳。在混合酸发酵类型中,酸化产物的总浓度较高。相比其他发酵类型,混合酸发酵类型可实现较高的碳转化率和酸化率。在产甲烷的多相反应中,酸化相一般调控为混合酸型发酵。

    1984年,COHEN等[78]首次提出了混菌丙酸型厌氧发酵,描述其反应特征为丙酸、乙酸的大量生成且并无明显气体生成。丙酸是一种重要且应用广泛的工业原料,全球年产量达4.5×105 t,年需求增长率为2.7%[125]。目前,丙酸的生化法合成研究主要依靠工程菌进行生产,混菌条件下的研究较少。当以获得生物沼气和氢气为目的时,实验及工程中往往抑制丙酸的生成。丙酸累积浓度达到0.3 mmol·L−1时会抑制产甲烷微生物活性,导致产沼气运行失败[53, 126]。微生物产丙酸代谢途径,几乎无自由氢的释放,产氢能力低。当以获得丙酸为目标产物时,丙酸型发酵产物可作为碳源促进废水中营养资源(如氮和磷)回收,回收率可提高至87.3%[127-128]。丙酸作为合成聚羟基脂肪酸(Polyhydroxyalkanoates,PHAs)的原料可提高生物塑料制品的韧性[129]。丙酸再加工产品也可广泛应用于食品、香水、涂料和化妆品行业[130]

  • 厌氧消化一般为水解、酸化和产甲烷3个阶段。因此,通常提高VFAs产量的途径主要有:1)提高水解速率,以产生较多的可溶性底物用于进一步发酵;2)促进产酸过程,提高VFAs转化率;3)去除抑制因子。预处理方法、底物、pH、温度、HRT是决定VFAs生产效率的关键因素。

    在厌氧消化代谢途径中,可溶性化学需氧量(soluble chemical oxygen demand, sCOD)作为连接水解和产酸的重要中间体,会影响VFAs的产率。预处理可促进底物水解并增强产酸发酵产VFAs。目前,预处理方法主要有化学法(酸和碱)、物理法(热、微波和超声)和生物法(酶)等。KIM等[131]研究了热预处理、酶预处理和热-酶联合预处理对食物垃圾产酸发酵的影响。结果表明,3种预处理均能促进sCOD生成、提高VFAs产量,而热酶法联合处理的VFAs产量最大。

    通常情况下,若基质中缺乏一些必要的营养元素可能会降低发酵产酸量。混合底物发酵可补充底物的营养元素,使得碳氮比适合于厌氧消化。KIM 等[25]的研究表明,与厨余垃圾和污水污泥的共消化相比,单一基质厌氧发酵可获得较多的VFAs产量。有机固废降解主要依靠微生物的生化代谢反应,因此,接种物是加速水解酸化的根本动力。通过高温[132]、pH降低[133]和药剂添加[134]等方法抑制产甲烷菌代谢以减少VFAs的消耗,是提高VFAs产量的一种重要方式。同时,接种物的性质也会影响有机固废产酸效果。如瘤胃微生物可强化餐厨垃圾的水解酸化,以得到最佳酸化效果[135]。大部分实验表明,微生物接种量与VFAs生成浓度呈正相关性[136],如在餐厨垃圾产酸过程中以酵母菌为接种物,酵母菌添加量对产酸的影响。该研究发现,当每克干物质中加入0.1 g酵母粉时,产生的VFAs浓度最高,乙酸含量也可达到85%以上。

    pH通过影响水解酸化过程以控制VFAs的产量[137]。一般而言,产酸菌对pH的适应性较广泛,对环境的变化不敏感,即使是过酸或过碱的环境仍然能够产VFAs。pH越趋向中性,水解率越高[89],VFAs产率更高[138],易形成混合酸型发酵。李永峰等[76]通过投加碳酸氢钠以控制进水pH为6.75~7.15,在20 d后,系统处于混合型发酵类型,酸化产物组成为乙醇9.9%、乙酸23.9%、丙酸51.8%和丁酸14.4%。张波等[138]发现,pH 7.0是餐厨垃圾最适宜的水解酸化条件,水解率达到86%,VFAs浓度为36 g·L−1。在中性条件下,基质中蛋白质被降解为氨氮,可缓冲发酵溶液中的酸性。HE等[137]发现,在剩余污泥水解酸化过程中,碱性条件下污泥的溶解性化学需氧量指标和VFAs浓度均有大幅提升。

    温度是影响微生物生长、酶活性和颗粒有机物水解的重要因子[139]。产酸细菌最佳生长温度为35~55 ℃,当温度低于20 ℃时,则产酸效率明显下降[32]。YUAN等[140]研究了温度对活性污泥产VFAs的影响。随着温度的增加,碳水化合物和蛋白质的溶解性增加,水解率随之升高。当温度在嗜冷(4~20 ℃)和嗜温(20~50 ℃)范围内升高时,VFAs产率也会升高。赵杰红等[139]研究了在25、37、40和50 ℃条件下,餐厨垃圾的水解和酸化差异。结果表明,在50 ℃时水解率最高(82%),而在37 ℃时VFAs产率最高,为29.55 g·L−1。SHI等[141]研究了温度对麦秸在不同温度下水解酶的影响,发现温度可以明显提高纤维素酶和木聚糖酶的酶活性,从而降低秸秆中干物质含量和挥发性物质含量。

    厌氧发酵过程相对速率较慢,故HRT对发酵过程的影响较大。理论上,较长的HRT有利于产酸发酵过程中VFAs的产生。然而,当HRT增加到一定程度时,由于基质的限制,VFAs产量将维持稳定[142]。不同底物提高脂肪酸产量的最优条件如表5所示。

  • 在有机物质厌氧发酵中,丙酸是重要的代谢中间产物,如pH、温度、HRT、OLR等因素都会综合影响其合成。MIN等[151]在连续实验中发现,pH 6.5时可获得的丙酸含量为80%。生活垃圾在45 ℃条件下发酵的主要酸化产物为丙酸[89]。乳清产酸发酵时,随着HRT由20 h增至95 h,丙酸产量亦随之增加,但丁酸的形成受到抑制[142]。DAHIYA等[152]发现,OLR(以COD计)为15 g·(L·d)−1时,丙酸型发酵产物最高为1.4 g·L−1。丙酸积累抑制产甲烷的现象已有较多研究。出现该现象的原因是:丙酸积累造成生态系统的酸性增强,进而影响产甲烷菌活性,导致产甲烷过程运行失败。国内外大量研究证实,丙酸质量浓度为0.8[153]~2 g·L−1[154] 时易出现抑制现象,但由于反应器形态、运行参数等不同,丙酸的耐受负荷也会稍有差异。郑明月等[126]发现,升流式厌氧颗粒污泥反应器可降解的丙酸最大冲击负荷(以COD计)为7.5 kg·(m3·d)−1,丙酸质量浓度达到0.02 g·L−1时会产生抑制作用。在混菌条件下,丙酸的转化情况见表6。文献[78, 155]表明,pH为5.0~5.5、氧化还原电位为−300~−100 mV是产丙酸细菌的优势生长条件,丙酸的转化情况见表6。在37 ℃和污泥停留时间(sludge retention time,SRT)为8 d的条件下,SRT和温度的升高,能显著提高污泥水解率和丙酸产量[156]。不同生物质有机废料中,纸张废料的发酵[157-158]更易于生成丙酸,可占总可酸化产物的39%~42%。为避免丙酸积累、稳定厌氧消化过程,添加微量元素和底物共消化方法对丙酸降解有促进作用[159-160]。MA等[161]在升流式污泥反应器中添加微量元素,丙酸降解速率可提高到23.4 g·(L·d)−1,相比空白对照提高了10倍。通过调控反应参数如pH和有机负荷等改变发酵类型,也能尽可能避免丙酸的生产和积累。

    以丙酸为目标产物时,工艺面临如何扩大产量和提升纯度2大挑战。丙酸物质生产过程中,由于酸化产物的生物毒性及代谢途径错综复杂,导致丙酸的产率和品质较低。有2种途径可提高丙酸的产率和纯度:一是提取发酵液中丙酸,以降低丙酸浓度,使其不高于生物耐受浓度[164-165];二是接种耐酸能力强和生化途径简单的微生物,以提高丙酸产量和纯度[166-169]。目前,有关混菌条件下进行丙酸促产的研究较少。通过微生物的筛选,已能够确定部分丙酸生成菌和丙酸消耗菌株。乳球菌(Lactococcus)可将甘油转化为乳酸代谢产物[169]。进而,一些梭杆菌可实现乳酸向丙酸的转化[170-171]。诺氏梭状芽孢杆菌(Clostridium novyi)菌种可利用葡萄糖、蜜二糖等生成丙酸[163]。产丙酸菌(Propionibacterium)革兰氏阳性厌氧菌株是最主要的产丙酸细菌[166]。其中,应用于丙酸型发酵的工程菌有瘤胃微生物反刍月形单胞菌(Selenomonas ruminantium)[172]、费氏丙酸杆菌(Propionibacterium freudenreichii)[173]和丙酸杆菌(Propionibacterium acidipropionici)[168]等。

  • 有机固废混菌发酵生产相比纯菌培养具有成本低,管理简单等优点,但其产物生产效能方面仍存在以下亟待解决问题。1)发酵副产品种类多,目标产物纯度低,参数定向调控难度高;2)微生物代谢抑制与竞争机理目前尚不明晰;3)VFAs产物同步分离提纯技术受限制;4)提纯产品再加工工艺不成熟。因此,可从有机固废预处理方法改进、定向发酵产物调控机制建立、微生物发酵代谢机理完善、化学产品提纯技术提升和厌氧发酵液加工流程开发等研究角度出发,分别把握典型发酵产物的促产、提质、加工和利用等关键环节,实现混菌条件下厌氧发酵操作单元的稳定性和可控性,提炼获得产量大、纯度高的目标发酵产物,为后续产物向产品转化单元减少工艺设计的复杂度并提高产物加工技术的可行性,从而实现有机固废资源的高效高值利用。

参考文献 (173)

目录

/

返回文章
返回