[1] LI S R, HUANG W L, YANG P Z, et al. One-pot synthesis of N-doped carbon intercalated molybdenum disulfide nanohybrid for enhanced adsorption of tetracycline from aqueous solutions[J]. Science of the Total Environment, 2021, 754: 141925. doi: 10.1016/j.scitotenv.2020.141925
[2] MIAO X S, BISHAY F, CHEN M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada[J]. Environmental Science and Technology, 2004, 38: 3533-3541. doi: 10.1021/es030653q
[3] XIN S S, LIU G C, MA X H, et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 280: 119386. doi: 10.1016/j.apcatb.2020.119386
[4] HUANG L H, LIU G F, DONG G H, et al. Reaction mechanism of zero-valent iron coupling with microbe to degrade tetracycline in permeable reactive barrier (PRB)[J]. Chemical Engineering Journal, 2017, 316: 525-533. doi: 10.1016/j.cej.2017.01.096
[5] PARK J A, NAM A, KIM J H, et al. Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties[J]. Chemosphere, 2018, 207: 347-356. doi: 10.1016/j.chemosphere.2018.05.096
[6] YU L L, CAO W, WU S C, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism[J]. Ecotoxicology and Environmental Safety, 2018, 164: 289-296. doi: 10.1016/j.ecoenv.2018.07.110
[7] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398: 125569. doi: 10.1016/j.cej.2020.125569
[8] LIN J W, HU Y Y, WANG L X, et al. M88/PS/Vis system for degradation of bisphenol A: Environmental factors, degradation pathways, and toxicity evaluation[J]. Chemical Engineering Journal, 2020, 382: 122931. doi: 10.1016/j.cej.2019.122931
[9] YAN D Y, HU H, GAO N Y, et al. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution[J]. Applied Surface Science, 2019, 498: 143836. doi: 10.1016/j.apsusc.2019.143836
[10] MEI W D, SONG H, TIAN Z Y, et al. Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: Regulation of photogenerated electron migration[J]. Materials Research Bulletin, 2019, 119: 110570. doi: 10.1016/j.materresbull.2019.110570
[11] YUAN R R, QIU J L, YUE C L, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification[J]. Chemical Engineering Journal, 2020, 401: 126020. doi: 10.1016/j.cej.2020.126020
[12] HUANG W Y, JING C W, ZHANG X D, et al. Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen[J]. Chemical Engineering Journal, 2018, 349: 603-612. doi: 10.1016/j.cej.2018.05.121
[13] LIU N, HUANG W Y, ZHANG X D, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128. doi: 10.1016/j.apcatb.2017.09.020
[14] ZHANG Y, LI G, LU H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4: 7594-7600. doi: 10.1039/c3ra46706f
[15] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. Journal of Physical Chemistry B, 1998, 102: 4477-4482. doi: 10.1021/jp9731821
[16] FUKUMOTO K, YOSHIZAWA M, OHNO H. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127: 2398-2399. doi: 10.1021/ja043451i
[17] GAN C L, LIANG T, LI W, et al. Amine-terminated ionic liquid modified graphene oxide/copper nanocomposite toward efficient lubrication[J]. Applied Surface Science, 2019, 491: 105-115. doi: 10.1016/j.apsusc.2019.06.141
[18] LIU N, CHEN X, MA Z F. Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2013, 48: 33-38. doi: 10.1016/j.bios.2013.03.080
[19] TANG Y Z, HUANG H L, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture[J]. Journal of Materials Chemistry A, 2019, 7: 18324-18329. doi: 10.1039/C9TA04408F
[20] 孟祥海, 刘植昌, 张睿, 等. 用于吸收酸性气体的含胺基离子液体及其制备方法与应用: CN201010279634.7[P]. 2013-05-15.
[21] CHALATI T, HORCAJADA P, GREF R, et al. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A[J]. Journal of Materials Chemistray, 2011, 21: 2220-2227. doi: 10.1039/C0JM03563G
[22] WU H, MA M D, GAI W Z, et al. Arsenic removal from water by metal-organic framework MIL-88A microrods[J]. Environmental Science and Pollution Research International, 2018, 25: 27196-27202. doi: 10.1007/s11356-018-2751-2
[23] Socrates G. Infrared and Raman Characteristic Group Frequencies[M]. 3rd ed. New York: John Wiley & Sons, 2001.
[24] REN G L, ZHAO K, ZHAO L. A Fenton-like method using ZnO doped MIL-88A for degradation of methylene blue dyes[J]. RSC Advances, 2020, 10: 39973-39980. doi: 10.1039/D0RA08076D
[25] DAI J L, ZHAO D K, SUN W M, et al. Cu(II) Ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis[J]. ACS Catalysis, 2019, 9: 10761-10772. doi: 10.1021/acscatal.9b04060
[26] CAO W, YUAN Y H, YANG C, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chemical Engineering Journal, 2020, 391: 123608. doi: 10.1016/j.cej.2019.123608
[27] YANG C, YOU X, CHENG J H, et al. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B: Environmental, 2017, 200: 673-680. doi: 10.1016/j.apcatb.2016.07.057
[28] ZHAO K, ZHANG Z S, FENG Y L, et al. Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface[J]. Applied Catalysis B: Environmental, 2020, 268: 118740. doi: 10.1016/j.apcatb.2020.118740
[29] OH W D, LOK L W, VEKSHA A, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. doi: 10.1016/j.cej.2017.09.182
[30] AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63.
[31] LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Applied Surface Science, 2016, 390: 368-376. doi: 10.1016/j.apsusc.2016.08.119
[32] PAN Y, YUAN X Z, JIANG L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chemical Engineering Journal, 2020, 384: 123310. doi: 10.1016/j.cej.2019.123310
[33] HE L, DONG Y N, ZHENG Y E, et al. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light[J]. Journal of Hazardous Materials, 2019, 361: 85-94. doi: 10.1016/j.jhazmat.2018.08.079
[34] FAKHRI H, BAGHERI H. Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: Synthesis, characterization and photodegradation of tetracycline and malathion[J]. Materials Science in Semiconductor Processing, 2020, 107: 104815. doi: 10.1016/j.mssp.2019.104815
[35] JIANG W, LI Z, LIU C B, et al. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst[J]. Journal of Alloys and Compounds, 2021, 854: 157166. doi: 10.1016/j.jallcom.2020.157166
[36] LIANG Q, CUI S N, JIN J, et al. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2018, 456: 899-907. doi: 10.1016/j.apsusc.2018.06.173
[37] WANG D B, JIA F Y, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067