磷酸改性颗粒污泥炭催化降解头孢氨苄

刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
引用本文: 刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
Citation: LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062

磷酸改性颗粒污泥炭催化降解头孢氨苄

    作者简介: 刘允康(1994—),男,硕士研究生。研究方向:水污染控制技术等。E-mail:liuyunkang23@163.com
    通讯作者: 余丽(1987—),女,博士,讲师。研究方向:有机废水高级氧化技术等。E-mail:yuli01@tyut.edu.cn
  • 基金项目:
    山西省应用基础研究计划(201901D211029);中国科学院青年创新促进会项目(2020190)
  • 中图分类号: X703

Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar

    Corresponding author: YU Li, yuli01@tyut.edu.cn
  • 摘要: 以厌氧颗粒污泥为底物制备了颗粒污泥炭(GSC-O),通过对其进行磷酸改性,获得了较高催化活性和较好稳定性的磷酸改性颗粒污泥炭(GSC-P)。在催化湿式过氧化氢氧化体系中,分别考察了温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解的影响。结果表明,GSC-P的催化性能远高于GSC-O。GSC-P催化降解头孢氨苄的最佳反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率高达89.6%。此外,对GSC-P的稳定性进行了评价。在重复利用5次后,催化剂上的活性组分铁的溶出率仅为0.83%,头孢氨苄的转化率稳定在80%~88%。以上研究结果表明,以磷酸改性后的颗粒污泥炭的比表面积和孔容积增大、表面铁含量较多、官能团丰富,催化活性显著提升,且具有磁性,有利于回收利用。
  • 在装卸、堆取和露天存放过程中,铁矿粉在作业机械的剪切、抛洒以及自然风力作用下容易扬尘,可吸入颗粒物PM10浓度高达182.2 μg·m−3。铁矿粉的无组织排放不仅造成铁矿粉自身的损耗,也危害从业人员健康。钢铁生产企业因此导致的年损耗率高达0.66%[1],直接经济损失巨大。外逸的铁矿粉影响周边的环境空气质量,超标的铁离子及其伴生的镉离子导致水体和土地污染[2],金属含量超标的水源灌溉,植物种子的发芽率降低,影响正常成苗和植物生长。铁是人体的必需微量元素之一,但摄入过量则会引起金属中毒。我国饮用水源地的铁含量整体超标且呈不断上升趋势,超标倍数高达8.80倍,超标率高达86.1%[3]。因此,提高钢铁企业料场和矿区等污染源的控制效率,提高空气、水体和土地安全性的意义重大。

    作为洒水抑尘的添加剂,抑尘剂通过润湿、保湿、聚集和固结等方式显著降低了煤炭[4]、渣土[5]和道路扬尘[6]的排放风险。但铁矿粉呈正电性[7],颗粒表面Fe-OH的极性大,这也决定了铁矿粉抑尘剂的特殊性。由于物理化学性质特殊,国内外对铁矿粉抑尘剂的技术研发进展缓慢,研究内容仍然停留在传统品种。表面活性剂可以润湿铁矿粉但无法提高内聚力,对PM10的控制效果不及水[8]。氯化钙和偏硅酸钠对PM10的控制效率达到85%,但这些无机盐腐蚀金属、严重影响植物生长,而且SiO2影响高炉冶炼[9]。制备安全、高效的抑尘剂,改善颗粒之间的相互作用,提高铁矿粉的稳定性和控制效率尤为必要。

    铁矿粉是一种特殊的污染源,既影响空气质量、又影响水体和土地安全;铁矿粉扬尘既危害环境,又导致直接经济损失[1];其表面性质不同于常见的颗粒物[7],且矿粉品质容易受抑尘剂影响[9],因此抑尘剂技术研发进展缓慢。本研究从含水率、Zeta电位、表面形貌、化学组成与晶体结构等基本性质出发,探讨铁矿粉与水性聚合物的之间的相互作用,估算装卸过程和露天堆场的湿控制效率、现场测定露天堆场的规模化效果,提高铁矿粉扬尘的控制效率。

    丙烯酸、甲基丙烯酸甲酯、丙烯酸丁酯和苯乙烯通过幂级加料方式合成水性聚合物抑尘剂[10],水溶胶状态,105 ℃固含量为39.7%,pH 为6.7。

    选择澳洲产铁矿粉,红褐色,某钢铁公司提供,自然干燥。过80目筛的粒级用于实验,其中,过200目筛的粒级占47.3%。由于扬尘主要来自75 μm以下的颗粒,参照AP-42方法[11],采用Mastersizer 2000激光粒度仪测定200目筛下粒级的粒度分布,如图1所示。可以看出,铁矿粉的中值粒径为18.81 μm,30 μm以下粒级的质量分数为66.93%。以ARL QUANT型X射线荧光光谱仪(XRF)测得其化学组成,结果见表1,Fe2O3含量为82.56%。

    表 1  过200目粒级的化学组成(质量分数)
    Table 1.  Iron ore composition less than 200 screen mesh (mass fraction)
    Fe2O3SiO2Al2O3P2O5TiO2
    82.569.227.540.190.17
    CaOMnOSO3ClK2O
    0.130.080.050.030.03
     | Show Table
    DownLoad: CSV
    图 1  过200目粒级的粒度分布
    Figure 1.  Iron ore size distribution less than 200 screen mesh

    1)含水率。铁矿粉的真密度为5.2 kg·m−3,但堆密度只有1.5 kg·m−3左右[12]。洒水的主要作用是增加堆密度和内聚力,在一定时间内降低风力侵蚀性。春夏之交是高扬尘季节,以此作为测试条件。将初始质量W0为20.0 g的铁矿粉置于φ100 mm培养皿中,喷洒5.0 g浓度为2.0%的抑尘剂水溶液至充分湿润,纯粹聚合物的质量为铁矿粉的0.5%;作为对比,蒸馏水代替抑尘剂水溶液,重复以上操作。测定30 ℃、35%相对湿度下t时刻的样品质量Wt,其含水率如式(1)所示。

    P=WtW0W0×100% (1)

    式中:P为含水率;Wtt时刻的样品质量,g;W0为初始样品质量,g。

    2) Zeta电位。根据式(2),在重力加速度g、空气密度ρ0、空气黏度γ和悬浮颗粒物密度ρ已确定时,其沉降速度ug取决于直径D[13]。直径增大,则降尘加快、空中滞留时间短、漂移范围小;粉体稳定性提高,风力扬尘量降低。

    ug=g(ρρ0)D218γ (2)

    式中:g为重力加速度;ρ0为空气密度;γ为空气黏度;ρ为悬浮颗粒物密度;ug为沉降速度;D为直径。

    铁矿粉呈正电性[7],聚集能力差,聚集体粒径低。借助Zeta电位,分析聚合物与铁矿粉颗粒之间的相互作用,藉以促进颗粒聚集。配制浓度为0.1%的铁矿粉悬浮液,以Nano-ZS90型电位分析仪测定Zeta电位。

    3)表面形貌。聚集体进一步聚集,即可相互胶结成膜[14],以篷布覆盖的方式封闭粉体表面,从根本上避免了扬尘,摆脱了对含水率的依赖。喷洒之后的铁矿粉在室温下干燥,喷金制样,以Nova Nano SEM450型电镜观察表面状态特征。

    4) X射线衍射分析。采用Bruker-D8 Focus型X-射线衍射仪(XRD)测定晶体结构,考察抑尘剂对铁矿粉结构和组成的影响[9]。扫描角度5°~80°,扫描速度12 (°)·min−1

    5)现场应用。在实验室评价的基础上,实施露天堆场的规模化抑尘。如图2所示,料场占地约60 hm2,南侧的料条以尼龙网苫盖,北侧料条正在堆取、装卸作业。中间料条为棱台状,地面长度740 m宽度40 m垂直高度7.5 m,东西两段相隔6 m。选择西段料条和料场地面为抑尘区域,东段料条作为对比区域。

    图 2  喷洒区域及监测点布设示意图
    Figure 2.  Sketch of sprayed zone and monitoring sites

    距地面1.5 m处安置Trak 8530型气溶胶监测仪,跟踪监测PM2.5和PM10浓度。根据《环境空气质量监测点位布设技术规范(试行)》(HJ 664-2013)布设监测点位,A1、A2、A3和A4的浓度平均值作为抑尘区域的浓度,B1和B2的平均值作为对比区域的浓度。

    2018年9月16日,架设扬尘在线物联网(IOT)系统,实时监测2.5 m高处的气象参数和颗粒物浓度(图3)。在上午10点30分,气温18 ℃相对湿度25%,晴,西北风,风速7.8 m·s−1,PM2.5和PM10浓度分别为46 μg·m−3和85 μg·m−3

    图 3  现场监测的物联网系统
    Figure 3.  IOT system monitoring on suppression field

    根据气象参数、颗粒物浓度和现场条件,采用多功能抑尘车喷洒地面,如图4所示。抑尘剂浓度为1.0%,喷洒量为1.0 kg·m−2,调整喷嘴的间隙和角度,后向喷洒、逆风行驶,车速不高于8 km·h−1;使用车载式高压喷枪喷洒西段料条,喷洒量约1.2 kg·m−2,自上而下蛇形操作。对比区域不做喷洒。

    图 4  现场喷洒料场地面
    Figure 4.  Spraying on storage yard ground

    1)平均含水率。如图5所示,喷洒抑尘剂后,铁矿粉在30 ℃、35%相对湿度下失水缓慢。聚合物质量用量为0.25%、0.5%和0.75%时,含水率依次增大,但至完全干燥,即失水达到平衡时3者差别不大。因此,集中讨论0.5%用量的铁矿粉。其平衡时间(te)为8 h,平衡含水率为2.35%。洒水样品的含水率为0.95%,平衡时间为4 h。

    图 5  铁矿粉含水率随时间的变化
    Figure 5.  Change of moisture content of iron ore powder with time

    含水率P随时间t的变化规律[6]如式(3)所示。

    P=AeBt(3) (3)

    式中:P为含水率;AB为常数。

    方程(3)取自然对数,回归结果见图6。根据式(4),抑尘铁矿粉从开始干燥的时刻t0到平衡时刻te,即干燥过程中抑尘铁矿粉的平均含水率为10.77%,洒水铁矿粉为4.8%。

    图 6  P=Ae-Bt的自然对数回归方程曲线
    Figure 6.  Regression curve with natural logarithm P=Ae-Bt equation
    Pav=tet0Pdttet0=tet0AeBtdttet0=Atet0eBtdttet0(4) (4)

    式中:Pav为平均含水率;t0为开始干燥时间,h;te为平衡时间,h。

    2)装卸过程扬尘的控制效率。根据式(5),可估算抑尘铁矿粉和洒水铁矿粉的排放系数EsE0[15],结果见表2。根据式(6),可计算抑尘剂对装卸过程扬尘的控制效率η,结果为67.78%。

    表 2  装卸过程扬尘的排放系数
    Table 2.  Dust emission factors during handling process
    样品Pav/%TSP/(g·t−1)PM10/(g·t−1)PM2.5/(g·t−1)
    抑尘铁矿粉10.770.750.360.05
    洒水铁矿粉4.802.331.100.17
     | Show Table
    DownLoad: CSV
    E=1.6ki(u2.2)1.3(2Pav)1.4(5)

    式中:E为堆场装卸扬尘的排放系数,g·t−1ki为物料的粒度乘数,TSP、PM10和PM2.5分别为0.74、0.35和0.053;u为地面平均风速,以9.5 m·s−1计,属5级风力。

    η=(1EsE0)×100% (6)

    式中:η为控制效率;Es为抑尘铁矿粉的排放系数,g·t−1E0为洒水铁矿粉的排放系数,g·t−1

    3)露天堆场扬尘的控制效率。式(7)是刘琴[16]建立的澳洲铁矿粉扬尘排放模型,据此计算9.5 m·s−1风速下洒水铁矿粉的扬尘量Q0,结果为33.68 g·(kg·h)−1,抑尘之后的扬尘量Qs为2.03 g·(kg·h)−1。参照式(6),抑尘剂对露天堆场铁矿粉扬尘的控制效率为93.96%。

    Q=2.892×103u5.16e0.47Pav (7)

    式中:Q为扬尘量,g·(kg·h)−1u为风速,m·s−1

    1) Zeta电位变化。铁矿粉在中性介质中以颗粒形式存在,表面呈正电性,Zeta电位仅为−14.6 mV。随聚合物用量的增加,图7的Zeta电位增强,说明铁矿粉与聚合物发生了化学吸附,吸附量增加,颗粒分散性提高;用量为0.5%时,极值电位达到−41.9 mV。用量持续增加,颗粒表面的负电荷则阻碍进一步吸附。

    图 7  聚合物用量对铁矿粉Zeta电位的影响
    Figure 7.  Polymer dosage effect on Zeta potential of iron ore particles

    在干燥过程中,铁矿粉的含水率不断降低,由于聚合物羧基与Fe3+交联、Fe―OH氢键作用[14],铁矿粉的内聚力逐渐提高。如图8所示,颗粒密实堆砌,聚集体粒径增加,细颗粒相应减少,粉体稳定性提高,风力侵蚀性则降低[17]

    图 8  干燥过程中的颗粒聚集
    Figure 8.  Particles agglomeration during the course of drying

    2)聚集体的表面形貌。水性聚合物的分散和交联作用可促进颗粒团聚,空隙降低,如图9(a)所示,有效阻塞水分传输,平均含水率因此提高了1.2倍。干燥之后,铁矿粉颗粒相互胶结成膜,形成致密的表面封闭层,风力侵蚀性显著下降。尽管澳洲铁矿粉的吸水性强、粒径小,但水的内聚能力低且有可逆性,洒水铁矿粉干燥之后的聚集状态较差,在图9(b)中表现为松散堆积,空隙可见。

    图 9  铁矿粉的SEM表面形貌
    Figure 9.  SEM images of iron ore aggregation surface

    此外,聚合物羧基与铁矿粉表面Si―OH、Al―OH的氢键作用可进一步增加内聚力[14]。而且,聚合物与颗粒之间的长程作用力具有加和性,其强度不亚于化学键。因此,铁矿粉的封闭层在干燥状态下有足够的强度抵御风力侵蚀,如果没有人为破坏和外来降尘,可以长期抑尘。

    1)铁矿粉的晶体结构。图10为铁矿粉样品在喷洒抑尘剂前后的XRD图谱,Fe2O3和SiO2特征衍射峰的衍射角θ、晶面间距d和半峰宽度见表3

    图 10  抑尘剂对铁矿粉XRD晶体结构的影响
    Figure 10.  Suppressant effect on iron ore structure characterized by XRD patterns
    表 3  抑尘剂对铁矿粉XRD参数的影响
    Table 3.  Effect of suppressant on XRD parameters of iron ore
    抑尘铁矿粉原料铁矿粉
    2θ/(°)d/nm半峰宽/(°)2θ/(°)d/nm半峰宽/(°)
    24.140.3680.09624.130.3690.092
    33.160.2700.14833.140.2700.150
    35.640.2520.12535.620.2520.128
    40.890.2210.14440.850.2210.143
    49.470.1840.13949.450.1840.154
    54.080.1690.19054.040.1700.176
    62.440.1480.11662.420.1490.131
    64.011.4500.19163.981.4500.148
     | Show Table
    DownLoad: CSV

    聚合物抑尘剂不含VOC等低分子化合物,只与颗粒表面的官能团结合,不可能进入晶格。由表3看出,铁矿粉的结构和组成没有变化。

    2)铁矿粉的化学组成。对比洒水铁矿粉和抑尘铁矿粉的化学组成(表4),有害元素S和P以及CaO、SiO2和Al2O3等杂质互有消长,但均在测试误差范围之内[18],故可以认为二者没有区别。结合XRD结果,足以说明抑尘剂没有影响铁矿粉的原料品质。

    表 4  洒水铁矿粉和抑尘铁矿粉的化学组成(质量分数)
    Table 4.  Compositions of suppressed and watering iron ore (mass fraction)
    样品Fe2O3SiO2Al2O3P2O5TiO2
    洒水铁矿粉81.859.537.950.180.16
    抑尘铁矿粉81.949.428.00.170.16
    样品CaOMnOSO3ClK2O
    洒水铁矿粉0.130.090.050.030.03
    抑尘铁矿粉0.120.070.060.030.03
     | Show Table
    DownLoad: CSV

    表5为现场监测的结果,0 h即抑尘剂喷洒施工之前,抑尘区的悬浮颗粒物浓度Cs和对比区浓度C0相当。喷洒之后Cs下降,根据式(8)计算控制效率,结果见图11

    表 5  抑尘现场的悬浮颗粒物浓度
    Table 5.  Particulate matter concentrations on suppression field
    时间/hPM2.5/(μg·m−3)PM10/(μg·m−3)
    抑尘区对比区抑尘区对比区
    044.041.584.581.5
    510.042.013.583.0
    2412.048.016.084.0
    4824.049.524.586.0
    7225.548.037.089.5
    9635.048.558.087.5
    12037.042.568.582.0
    14443.545.577.580.0
     | Show Table
    DownLoad: CSV
    图 11  抑尘现场的控制效率
    Figure 11.  Dust control efficiency on suppression field
    η=(1CsC0)×100% (8)

    式中:η为控制效率;Cs为抑尘区的悬浮颗粒物浓度,μg·m−3C0为抑尘区的悬浮颗粒物浓度,μg·m−3

    图11中,喷洒后5 h的PM2.5和PM10控制效率分别为76.19%和83.73%,24 h后分别为75.0%和80.95%,与估算结果非常接近,证实了以上评价方法的可行性。

    因设备条件所限,北侧料条无法控制更新界面的扬尘,受风力和装卸作业的持续影响,48 h的PM2.5和PM10控制效率分别降至51.52%和71.51%,72 h后分别为46.88%和58.66%。尽管如此,在30 d的观察期间,抑尘的堆体和料场地面保持完好,封闭状态未受风力影响(图12)。

    图 12  封闭状态稳定的堆体表面
    Figure 12.  Stable pile surface under sealing conditions

    1)聚合物对铁矿粉的原料品质无不良影响,不会影响后期冶炼。该聚合物可通过离子交联和氢键作用,促进铁矿粉颗粒团聚、提高内聚力,使其平均含水率明显提高。装卸过程和露天堆场扬尘估算的控制效率分别为67.78%和93.96%。干燥状态下可形成封闭层,从而有效降低风力侵蚀,可实现半年以上的长期抑尘。

    2)铁矿粉露天堆场PM2.5和PM10的24 h控制效率分别达到75.0%和80.95%,30 d内粉体的封闭状态稳定。现场与实验室结果接近,证实了实际应用和评价方法的可行性。今后应开展不同类型铁矿粉的应用研究,完善堆取作业面的扬尘控制设施。

  • 图 1  颗粒污泥炭GSC-O和GSC-P的XRD谱图和磁滞回线

    Figure 1.  XRD patterns and Hysteresis loops of GSC-O and GSC-P

    图 2  颗粒污泥和颗粒污泥炭的SEM和EDS元素面扫描图

    Figure 2.  SEM and elemental surface scanning images of the granular sludge and granular sludge based biochar

    图 3  颗粒污泥炭GSC-O和GSC-P的XPS谱图

    Figure 3.  XPS spectra of GSC-O and GSC-P

    图 4  温度、pH、H2O2、催化剂投加量和污染物浓度对头孢氨苄转化率和TOC去除率的影响

    Figure 4.  Effects of temperature, pH, the dosage of H2O2 and catalyst and pollutant concentration on cephalexin conversion and TOC removal

    图 5  头孢氨苄降解动力学

    Figure 5.  Kinetics of cephalexin degradation

    图 6  EPR谱图和颗粒污泥炭GSC-P稳定性评价

    Figure 6.  EPR spectra and the stability evaluation of GSC-P

    图 7  颗粒污泥炭GSC-P催化头孢氨苄的降解途径

    Figure 7.  Catalytic degradation pathway of cephalexin with GSC-P

    表 1  颗粒污泥炭的元素组成、比表面积和孔隙特征

    Table 1.  Element composition, specific surface area and porous structure of granular sludge based biochar

    样品产率/% 元素含量/% 比表面积/(m2·g−1)孔容积/(cm3·g−1)
    CHONSSiAlFeCa
    GSC-O36.9535.011.8815.171.750.8612.282.356.069.8710.030.035
    GSC-P17.3229.682.3316.342.031.3215.191.745.441.3696.210.116
    样品产率/% 元素含量/% 比表面积/(m2·g−1)孔容积/(cm3·g−1)
    CHONSSiAlFeCa
    GSC-O36.9535.011.8815.171.750.8612.282.356.069.8710.030.035
    GSC-P17.3229.682.3316.342.031.3215.191.745.441.3696.210.116
    下载: 导出CSV

    表 2  GSC-O和GSC-P的EDS元素面扫描结果

    Table 2.  EDS elemental surface scanning results of GSC-O and GSC-P

    样品元素百分占比/%
    CNOAlSiPSCaFe
    GSC-O551132283133
    GSC-P472142286136
    样品元素百分占比/%
    CNOAlSiPSCaFe
    GSC-O551132283133
    GSC-P472142286136
    下载: 导出CSV

    表 3  FT-ICR MS分析头孢氨苄催化降解中间产物的结果

    Table 3.  Intermediates identified by FT-ICR MS analysis during the cephalexin catalytic degradation

    产物分子式m/z检测值m/z理论值离子类型
    C16H17N3SO4348.101 4348.101 3[M+H]+
    P1C16H15N3SO6400.057 8400.057 4[M+Na]+
    P2C15H19N3SO7386.101 9386.101 6[M+H]+
    P3C15H19N3SO6370.107 3370.106 7[M+H]+
    P4C8H10N2O151.086 7151.086 6[M+H]+
    P5C6H9NO3S174.023 2174.023 0[M+H]+
    P6C8H6O3173.020 3173.020 9[M+Na]+
    P7C2H6N2O147.088 1147.088 7[2M-H]-
    P8C7H6O2123.044 4123.044 1[M+H]+
    P9C4H8111.117 8111.117 9[2M-H]-
    P10C4H6O2171.066 3171.066 3[2M-H]-
    产物分子式m/z检测值m/z理论值离子类型
    C16H17N3SO4348.101 4348.101 3[M+H]+
    P1C16H15N3SO6400.057 8400.057 4[M+Na]+
    P2C15H19N3SO7386.101 9386.101 6[M+H]+
    P3C15H19N3SO6370.107 3370.106 7[M+H]+
    P4C8H10N2O151.086 7151.086 6[M+H]+
    P5C6H9NO3S174.023 2174.023 0[M+H]+
    P6C8H6O3173.020 3173.020 9[M+Na]+
    P7C2H6N2O147.088 1147.088 7[2M-H]-
    P8C7H6O2123.044 4123.044 1[M+H]+
    P9C4H8111.117 8111.117 9[2M-H]-
    P10C4H6O2171.066 3171.066 3[2M-H]-
    下载: 导出CSV
  • [1] JEYASEELAN S, LU G Q. Development of adsorbent/catalyst from municipal wastewater sludge[J]. Water Science & Technology, 1996, 34(3): 499-505.
    [2] YOSHIDA H, TEN HOEVE M, CHRISTENSEN T H, et al. Life cycle assessment of sewage sludge management options including long-term impacts after land application[J]. Journal of Cleaner Production, 2018, 174: 538-547. doi: 10.1016/j.jclepro.2017.10.175
    [3] WANG X D, CHI Q Q, LIU X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. doi: 10.1016/j.chemosphere.2018.10.189
    [4] WANG Y, WEI H, ZHAO Y, et al. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst[J]. Journal of Hazardous Materials, 2017, 326: 36-46. doi: 10.1016/j.jhazmat.2016.12.014
    [5] 余丽, 刘允康, ATTI M, 等. CWPO体系中污泥炭催化降解头孢氨苄废水[J]. 环境化学, 2020, 39(5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
    [6] HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2007, 141(3): 819-825. doi: 10.1016/j.jhazmat.2006.07.049
    [7] LU X Q, ZHEN G Y, NI J L, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017, 108: 137-150. doi: 10.1016/j.watres.2016.10.073
    [8] ZHAO Q, YU M, LU H, et al. Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process[J]. Bioresource Technology, 2019, 291: 121871. doi: 10.1016/j.biortech.2019.121871
    [9] SMITH K M, FOWLER G D, PULLKET S, et al. The production of attrition resistant, sewage-sludge derived, granular activated carbon[J]. Separation and Purification Technology, 2012, 98: 240-248. doi: 10.1016/j.seppur.2012.07.026
    [10] SHI L, ZHANG G, WEI D, et al. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions[J]. Journal of Mollecular Liquids, 2014, 198: 334-340. doi: 10.1016/j.molliq.2014.07.023
    [11] WANG M, TIAN J, ROBERTS D G, et al. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel, 2015, 142: 102-108. doi: 10.1016/j.fuel.2014.11.003
    [12] YU Y, WEI H, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. RSC Advances, 2015, 5(52): 41867-41876. doi: 10.1039/C5RA00858A
    [13] YU Y, WEI H, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6(4): 1085-1093.
    [14] TU Y, XIONG Y, TIAN S, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276: 88-96. doi: 10.1016/j.jhazmat.2014.05.024
    [15] STREIT A F M, CORTES L N, DRUZIAN S P, et al. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions[J]. Science of the Total Environment, 2019, 660: 277-287. doi: 10.1016/j.scitotenv.2019.01.027
    [16] WANG Y, WEI H, ZHAO Y, et al. Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol[J]. Green Chemistry, 2017, 19(5): 1362-1370. doi: 10.1039/C6GC03001G
    [17] YI Y, TU G, ZHAO D, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor[J]. Chemical Engineering Journal, 2019, 360: 212-220. doi: 10.1016/j.cej.2018.11.205
    [18] YU L, LIU Y, WEI H, et al. Developing a high-quality catalyst from the pyrolysis of anaerobic granular sludge: Its application for m-cresol degradation[J]. Chemosphere, 2020, 255: 126939. doi: 10.1016/j.chemosphere.2020.126939
    [19] ZHAO L, SUN Z, MA J, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(6): 2047-2053.
    [20] LIU X, HUANG F, YU Y, et al. Ofloxacin degradation over Cu-Ce tyre carbon catalysts by the microwave assisted persulfate process[J]. Applied Catalysis B: Environment, 2019, 253: 149-159. doi: 10.1016/j.apcatb.2019.04.047
    [21] BEDIA J, MONSALVO V M, RODRIGUEZ J J, et al. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO[J]. Chemical Engineering Journal, 2017, 318: 224-230. doi: 10.1016/j.cej.2016.06.096
    [22] HINOJOSA M M, OLLER ALBEROLA I, MALATO RODRIGUEZ S, et al. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process[J]. Water Research, 2019, 156: 232-240. doi: 10.1016/j.watres.2019.02.055
    [23] HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins[J]. Environmental Science & Technology, 2018, 52(16): 9188-9195.
    [24] HE J, ZHANG Y, GUO Y, et al. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms[J]. Environment International, 2019, 132: 105105. doi: 10.1016/j.envint.2019.105105
  • 期刊类型引用(7)

    1. 洪宁宁,彭士涛,苏宁,叶寅,崔继宪,刘鹏,程利. 煤炭码头粉尘无组织排放防治措施对比研究. 水道港口. 2024(03): 455-460 . 百度学术
    2. 马思远,侯永生,吕军军. 基于响应面法秸秆利用生物抑尘剂制备优化. 化学工程. 2023(01): 6-10+16 . 百度学术
    3. 李刚,周哲,胡锦华. 基于知识图谱的我国矿井粉尘防治技术研究进展与展望. 金属矿山. 2023(07): 28-39 . 百度学术
    4. 黄冠聪,黄晓波,颜敏. 深圳市典型建筑工地PM_(10)和PM_(2.5)排放因子研究. 广东化工. 2023(24): 121-123 . 百度学术
    5. 米永进,赵全胜,杨彦军. 基于正交试验法秸秆利用生物抑尘剂的制备及优化. 公路交通科技. 2021(04): 36-44 . 百度学术
    6. 王林凯,郭红霞,秦建平,黄玉虎,李贝贝. 风蚀扬尘抑尘剂制备及其抑尘效果. 环境工程学报. 2020(12): 3460-3467 . 本站查看
    7. 冯国超. 残矿中低含量铁的测定. 云南化工. 2019(12): 111-112 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.8 %DOWNLOAD: 2.8 %HTML全文: 89.7 %HTML全文: 89.7 %摘要: 7.5 %摘要: 7.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.4 %其他: 82.4 %Ashburn: 1.7 %Ashburn: 1.7 %Bangkok: 0.2 %Bangkok: 0.2 %Beijing: 4.5 %Beijing: 4.5 %Chang'an: 0.1 %Chang'an: 0.1 %Chengdu: 0.1 %Chengdu: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Hangzhou: 1.0 %Hangzhou: 1.0 %Jinan: 0.1 %Jinan: 0.1 %Langfang: 0.1 %Langfang: 0.1 %Lanzhou: 0.1 %Lanzhou: 0.1 %luohe shi: 0.1 %luohe shi: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Newark: 0.4 %Newark: 0.4 %Penza: 0.1 %Penza: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Shanghai: 1.3 %Shanghai: 1.3 %Shangqiu: 0.3 %Shangqiu: 0.3 %Shenyang: 0.1 %Shenyang: 0.1 %Suzhou: 0.3 %Suzhou: 0.3 %Taiyuan: 0.3 %Taiyuan: 0.3 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %Xi'an: 0.2 %Xi'an: 0.2 %Xingfeng: 0.2 %Xingfeng: 0.2 %XX: 4.5 %XX: 4.5 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.8 %北京: 0.8 %南京: 0.1 %南京: 0.1 %廊坊: 0.1 %廊坊: 0.1 %深圳: 0.1 %深圳: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.2 %郑州: 0.2 %银川: 0.1 %银川: 0.1 %青岛: 0.2 %青岛: 0.2 %其他AshburnBangkokBeijingChang'anChengduGuangzhouGuangzhou ShiHangzhouJinanLangfangLanzhouluohe shiMountain ViewNewarkPenzaQingdaoShanghaiShangqiuShenyangSuzhouTaiyuanTaiyuanshiXi'anXingfengXXYunchengZhengzhou内网IP北京南京廊坊深圳贵阳郑州银川青岛Highcharts.com
图( 7) 表( 3)
计量
  • 文章访问数:  4146
  • HTML全文浏览数:  4146
  • PDF下载数:  46
  • 施引文献:  7
出版历程
  • 收稿日期:  2020-11-05
  • 录用日期:  2021-03-12
  • 刊出日期:  2021-05-10
刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
引用本文: 刘允康, 赵颖, 侯作君, 王国英, 安鸿翔, 卫皇曌, 余丽. 磷酸改性颗粒污泥炭催化降解头孢氨苄[J]. 环境工程学报, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062
Citation: LIU Yunkang, ZHAO Ying, HOU Zuojun, WANG Guoying, AN Hongxiang, WEI Huangzhao, YU Li. Catalytic degradation of cephalexin with phosphoric acid modified-anaerobic granular sludge based biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1539-1548. doi: 10.12030/j.cjee.202011062

磷酸改性颗粒污泥炭催化降解头孢氨苄

    通讯作者: 余丽(1987—),女,博士,讲师。研究方向:有机废水高级氧化技术等。E-mail:yuli01@tyut.edu.cn
    作者简介: 刘允康(1994—),男,硕士研究生。研究方向:水污染控制技术等。E-mail:liuyunkang23@163.com
  • 1. 太原理工大学环境科学与工程学院,太原 030024
  • 2. 中国科学院大连化学物理研究所,大连 116023
  • 3. 中国辐射防护研究院,太原 030024
基金项目:
山西省应用基础研究计划(201901D211029);中国科学院青年创新促进会项目(2020190)

摘要: 以厌氧颗粒污泥为底物制备了颗粒污泥炭(GSC-O),通过对其进行磷酸改性,获得了较高催化活性和较好稳定性的磷酸改性颗粒污泥炭(GSC-P)。在催化湿式过氧化氢氧化体系中,分别考察了温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解的影响。结果表明,GSC-P的催化性能远高于GSC-O。GSC-P催化降解头孢氨苄的最佳反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率高达89.6%。此外,对GSC-P的稳定性进行了评价。在重复利用5次后,催化剂上的活性组分铁的溶出率仅为0.83%,头孢氨苄的转化率稳定在80%~88%。以上研究结果表明,以磷酸改性后的颗粒污泥炭的比表面积和孔容积增大、表面铁含量较多、官能团丰富,催化活性显著提升,且具有磁性,有利于回收利用。

English Abstract

  • 随着市政污水处理量逐年递增,导致污泥产量及污泥处理压力也迅速增加。目前污泥的主要处置方式有卫生填埋、焚烧、建材利用和土地利用等。然而,污泥中含有大量有机质、氮磷钾等营养物质,有利于其资源化、能源化处理。利用城市污水厂污泥制备污泥活性炭是上世纪80年代出现的一种新型污泥资源化利用途径[1]。相比于传统的污泥处理处置方法,市政污泥经高温碳化和活化制备污泥炭,在热解过程中能够杀死污泥中的病原体、固定污泥中的重金属和碳元素,具有良好的环境效益和经济效益[2-3]。在过去十几年里,污泥碳化制备生物炭应用于有机污染物的吸附与降解已取得一些研究进展[4-6]

    厌氧颗粒污泥法能有效处理高浓度有机废水,例如啤酒废水、制药废水和煤化工废水等,其工艺具有效率高、成本低、操作方便等优势[7-8]。厌氧颗粒污泥是微生物自絮凝的结果,为疏松结构且含大量的营养物质。由于厌氧颗粒污泥中含有大量的微生物,且种类丰富,故通过微生物新陈代谢作用可以将金属很好的分散在颗粒污泥中。以无定型污泥(活性污泥、脱水污泥等)作为底物制备污泥炭,其成型过程费用较高[9]。而颗粒污泥在厌氧反应过程中自然成型,并在热解后保持颗粒状态。因此,厌氧颗粒污泥是制备污泥炭的一种潜在原料[10],但还缺乏相关研究报道。

    抗生素广泛应用于人类和动物的疾病预防与治疗,抗生素废水含有多种难降解且具有生物毒性的物质,污水处理厂对抗生素的最高转化率仅为81%,低浓度的抗生素也可能对环境造成潜在的影响。而催化湿式过氧化氢氧化技术(catalytic wet peroxide oxidation,CWPO)是一种处理难降解有机物废水的有效方法,其具有反应条件温和、试剂无毒[5]的特点。

    本研究以厌氧颗粒污泥为原料制备污泥炭催化剂,以第1类头孢类抗生素——头孢氨苄为模型污染物,在CWPO体系中对其进行了降解实验,在此过程中考察了颗粒污泥炭的催化性能和稳定性,同时分析了颗粒污泥炭的理化性质,检测了中间产物并提出了可能的降解途径。本研究可为污泥的资源化、能源化利用和抗生素废水的高效治理提供参考。

  • 厌氧颗粒污泥取自山西省某淀粉废水厂的废水处理厌氧反应器,粒径2~3 mm。依次用超纯水和乙醇冲洗颗粒污泥,再自然晾干,之后置于烘箱中105 ℃处理3 h,待冷却后,用管式炉进行炭化处理,实验装置示意图参考文献中的方法[11]建立。制备条件为:在80 mL·min−1的N2气氛下,以3 ℃·min−1速率升温至800 ℃,焙烧3 h,待冷却后,记为未改性颗粒污泥炭GSC-O。用53.4% (质量分数)的H3PO4在25 ℃对GSC-O进行改性24 h,之后用超纯水冲洗至中性,记为改性颗粒污泥炭GSC-P。

  • 配置头孢氨苄废水模拟溶液100 mL,加入250 mL锥形瓶中,再投加颗粒污泥炭,置于设置好温度的水浴振荡器上,以120 r·min−1的速度振荡混合进行吸附实验。待吸附平衡后,加入一定的过氧化氢,进行CWPO催化降解反应,每隔一段时间进行取样并立即加入Na2SO3抑制反应进行,用0.45 μm滤膜过滤后分析头孢氨苄的转化率。分别考察温度、pH、过氧化氢投加量、催化剂投加量、反应物初始浓度和反应时间等因素对头孢氨苄降解过程的影响。反应条件为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min。实验过程中,改变其中一种条件,研究其对头孢氨苄转化率和TOC去除率的影响。

  • 使用元素分析仪(EURO EA3000)和电感耦合等离子体发射光谱法(ICP-OES,Horiba Jobin-Y von)测定颗粒污泥炭的元素组成;使用美国麦克ASAP 2460型物理吸附仪测定污泥炭的比表面积和孔容积;使用Rigaku Utima IV型X射线衍射仪(XRD)分析晶型结构;使用ZEISS MERLIN型扫描电子显微镜(SEM)结合X射线能谱(EDS)和元素面分布技术(EDS-mapping)观察颗粒污泥及颗粒污泥炭的表观形貌特征和元素组成;使用电子顺磁共振技术(EPR)技术并以5,5-二甲基-1-吡咯啉-N-氧化物(DMPO,C6H11NO)为自旋捕捉剂进行自由基检测;头孢氨苄采用液相色谱法(伍丰LC100高效液相色谱仪)进行测定,色谱柱:Bioband GP120-C18(250 mm×4.6 mm,5 μm),流动相A为甲醇,流动相B为超纯水,A∶B=40∶60 (vv),检测波长λ为254 nm,流速为1.0 mL·min−1,柱温为35 ℃,进样量20 μL;用Bruker Solarix 15T 傅立叶变换离子回旋共振质谱(FT-ICR MS)探测鉴定头孢氨苄降解中间产物,数据处理由软件DataAnalysis 4.2(Bruker, Daltonics GmbH, Bremen, Germany)完成。

  • 1)颗粒污泥炭组成。由表1可知,颗粒污泥炭的产率较低,经过磷酸改性后,部分灰分被去除,产率进一步降低。颗粒污泥在灰分去除的同时形成多孔结构,颗粒污泥炭的比表面积由10.03 m2·g−1增加到96.21 m2·g−1。由此可见,经过改性后,颗粒污泥炭的比表面积和孔容积均得到改善。

    颗粒污泥中金属类物质较丰富,因此,其热解产物污泥炭中金属种类较多。由表1可知,GSC-O和GSC-P的含铁量分别为6.06%和5.44%。与脱水污泥制备的污泥炭含铁量(0.978%)相比[12-13],颗粒污泥炭的含铁量很高,而Fe又是催化剂中重要的活性组分,这有利于后续进行的头孢氨苄降解实验。

    2)颗粒污泥炭表征。颗粒污泥炭的XRD分析结果如图1(a)所示。GSC-O具有一些明显的特征峰,位于28.73°、34.17°、47.25°和50.90°的峰属于Ca(OH)2(JCPDS 72-0156)的(100)、(011)、(012)和(110)晶面,位于32.24°、37.40°和53.93°的衍射峰是CaO(JCPDS 82-1690),位于18.29°、21.15°、37.07°和47.16°衍射峰是Fe3O4(磁性,JCPDS 79-0416)。TU等[14]的研究也表明污泥炭中存在Fe3O4,这是其具有磁性的重要原因。另外,位于31.13°和33.82°的峰是Fe2O3(JCPDS 40-1139)的晶面(113)和(116)。然而,GSC-P污泥炭的XRD谱图几乎没有明显特征峰,在13°~35°处的宽峰是一种典型的无定型结构[15]。这说明改性后污泥炭的晶体结构被破坏[14]。由图1(b)可知,虽然改性后磁性稍有降低,但GSC-P仍具有磁性,可被磁铁吸引,故GSC-P易实现回收和利用。

    颗粒污泥及污泥炭的表面特征如图2所示。与颗粒污泥外部(图2(a))相比,颗粒污泥内部(图2(b))更粗糙且微生物更丰富。颗粒污泥经过高温热解后,微生物破壁死亡,胞内有机物转化为生物炭基体。如图2(c)所示,未改性颗粒污泥炭GSC-O样品表面较光滑、孔结构不发达。有研究[16]采用物理改性和化学改性法对热解后的污泥炭进行改性处理,以提高污泥炭催化性能。由图2(d)可见,改性颗粒污泥炭GSC-P表面粗糙、疏松多孔,从而增大颗粒污泥炭的比表面积和孔隙率,这与表1中的结果一致。虽然GSC-P的含铁量略低于GSC-O,但对比表2可知,GSC-P污泥炭表面上的铁含量为GSC-O的2倍,有利于催化过氧化氢分解产生羟基自由基,从而提高头孢氨苄的降解效率。

    图3是颗粒污泥炭的C1s和Fe2p的XPS谱图。为了分析污泥炭表面官能团的存在形态和含量,对XPS谱图进行了分峰处理。C1s可分为3种峰:石墨态碳(C—C,284.80 eV),酚羟基及醚类碳(C—O,286.00~286.20 eV),羧基及酯类碳(C=O,287.30~287.70 eV)[16]。由图3(a)可见,GSC-O中的C—C含量很高,占87.70%,而经过磷酸改性得到的GSC-P中,部分石墨态碳被氧化,C—C含量降低为55.29%,生成了C—O(36.47%)和C=O(8.25%)等含氧结构。污泥炭表面存在4种结合形态的Fe,即FeO(710.00~710.01 eV)、α-Fe2O3(711.50~712.04 eV)、γ-Fe2O3(722.95~723.47 eV)和Fe3O4(725.43~725.45 eV)[17]。虽然经磷酸改性得到的GSC-P中铁含量略低于GSC-O(表1),但其表面铁含量较多(图2(f)),在XPS谱图中峰强度较大(图3(b)),且Fe(II)所占比例较大(26.21%),有利于提高催化剂的催化活性。

  • 实验中探索了温度、pH、H2O2投加量、催化剂投加量和污染物浓度对头孢氨苄转化率的影响,结果如图4所示。前120 min进行吸附实验,不同条件下头孢氨苄的吸附去除率小于5%。颗粒污泥炭比表面积仅为10.03 m2·g−1和96.21 m2·g−1(表1),限制了其对污染物的吸附作用,因此,吸附作用对头孢氨苄的去除影响可忽略不计。

    图4(a)图4(b)图4(c)所示,随着温度的升高,2种催化剂对头孢氨苄的转化率逐渐升高。这是因为高温增加分子碰撞的概率,有利于·OH的产生[18]。当温度为60 ℃,GSC-P对头孢氨苄的转化率已高达90.2%,而GSC-O对头孢氨苄的转化率仅为23.9%。如图4(d)图4(e)图4(f)所示,随着pH由2升高至6,投加GSC-O和GSC-P的体系中头孢氨苄的转化率呈现下降趋势,说明酸性环境更有利于头孢氨苄的降解。当pH由4上升至6时,对于GSC-P催化剂,头孢氨苄的转化率由67.6%下降至43.7%。这是因为在酸性条件下,过氧化氢易分解产生羟基自由基,从而可促进头孢氨苄的降解[4, 19]。如图4(g)图4(h)图4(i)所示,当H2O2投加量为0.5 g·L−1时,GSC-O和GSC-P对头孢氨苄的转化率分别为19.5%和76.6%。当H2O2投加量增加为1.0 g·L−1时,GSC-P催化剂对头孢氨苄的转化率为90.2%,TOC去除率为53.9%,这是因为头孢氨苄降解生成了一些中间产物,并没有完全矿化。下文中的FT-ICR-MS结果也证实了这一结论。如图4(j)图4(k)图4(l)所示,随着GSC-P投加量增大,头孢氨苄的转化率增加。当GSC-P投加量达到1.0 g·L−1和1.5 g·L−1时,头孢氨苄转化率分别为90.2%和92.6%。这是因为催化剂投加量的提高,为反应提供更多的活性位点,促进·OH产生及头孢氨苄的降解[4]。如图4(m)图4(n)图4(o)所示,随着污染物浓度升高,头孢氨苄的转化率和TOC去除率降低。当污染物浓度为100 mg·L−1以下时,GSC-P对头孢氨苄的转化率高于89.6%,且TOC去除率大于53.5%。

  • 降解过程的动力学分析结果如图5所示。头孢氨苄的催化降解过程分多个阶段,每个阶段均符合一级反应动力学特征。在120~150 min内,降解速率较快,符合一种一级反应动力学,头孢氨苄转化率约为45%;在150~270 min内,降解速率降低,进入另一种一级反应动力学,头孢氨苄转化率为89.6%;在270~300 min内,降解速率趋于平缓,头孢氨苄的转化率仅增加10%左右。

    因此,综合考虑降解效率和经济等因素,在CWPO体系中,用磷酸改性的颗粒污泥炭GSC-P催化降解头孢氨苄对最佳条件为:温度为60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,此时,头孢氨苄的转化率为89.6%。而未改性颗粒污泥炭GSC-O对头孢氨苄的转化率仅为21%。由表1可知,GSC-O和GSC-P中的含铁量均较高,但GSC-O的催化活性却远低于GSC-P。由颗粒污泥炭的表征结果(表2图3(b))可知,与GSC-O相比,GSC-P表面上的铁含量较多,且Fe(II)所占比例较大,表面疏松多孔,官能团如羟基、羧基等较丰富,这有利于提供催化反应的活性组分和活性位点。

  • 以DMPO为自旋捕捉剂进行自由基检测,结果如图6(a)所示。可见,DMPO-OH特征峰比例为1:2:2:1,证明为·OH[20]。在最佳条件下,对颗粒污泥炭GSC-P进行了5次循环利用,基于催化作用得到的头孢氨苄转化率结果如图6(b)所示。头孢氨苄的转化率稳定维持在80%~88%。颗粒污泥炭的铁溶出率仅为0.83%,远低于一些文献中铁的溶出率(2.77%~11.5%)[12, 14, 17, 21]。上述结果表明,经磷酸常温改性的颗粒污泥炭具有较高的催化活性,可以重复使用,是一种催化性能和稳定性较高的非均相CWPO催化剂。与粉末状污泥炭相比,颗粒污泥炭有一定形状且呈现磁性更易回收,可以重复使用,从而避免了二次污染[5]

  • 通过FT-ICR MS对头孢氨苄降解的中间产物进行了探测鉴定。根据检测的中间产物(表3),提出了降解途径。如图7所示,降解过程主要包括羟基化、去甲基化、脱羧和脱烷基等。头孢氨苄的甲基被·OH进攻氧化为羧基生成P1,再通过脱羧、羟基化使β-内酰胺环开环生成P2[22-23],P2上六元环连接的羧基碳失去1个氧原子得到P3,同时,P2通过脱羧和断键(C—N)反应生成P4和P5,之后生成苯甲酰甲酸(P6)、氨基乙酰胺(P7)、苯甲酸(P8)、丁烯(P9)、丁二酮(P10)等小分子有机物,由于TOC去除率为53.9%,所以部分中间产物进一步矿化生成无机小分子CO2、H2O等。HE等[24]的研究中也检测到P2、P3和P5。

  • 1)以厌氧颗粒污泥制备颗粒污泥炭后,通过磷酸改性可以有效提高其催化活性。改性后催化剂表面铁含量增大,催化剂比表面积和孔容积增大,表面官能团较为丰富,有利于催化湿式过氧化氢氧化反应。

    2)综合考虑降解效率和经济等因素,在CWPO体系中其对头孢氨苄的反应条件宜为:温度60 ℃、pH为3、过氧化氢投加量为1.0 g·L−1、催化剂投加量为1.0 g·L−1、反应物初始浓度为100 mg·L−1和反应时间300 min,在此条件下头孢氨苄的转化率为89.6%。

    3) GSC-P催化稳定性较高,在反复使用5次后,活性组分Fe的溶出率很低,仅为0.83%,头孢氨苄的转化率稳定在80%~88%。颗粒污泥炭具有一定形状且呈现磁性易回收,可以重复使用,可避免二次污染。

    4)头孢氨苄的降解是通过羟基化、去甲基化、脱羧和脱烷基等过程生成小分子有机物,再进一步矿化生成CO2和H2O等无机物。

参考文献 (24)

返回顶部

目录

/

返回文章
返回