[1] |
JEYASEELAN S, LU G Q. Development of adsorbent/catalyst from municipal wastewater sludge[J]. Water Science & Technology, 1996, 34(3): 499-505.
|
[2] |
YOSHIDA H, TEN HOEVE M, CHRISTENSEN T H, et al. Life cycle assessment of sewage sludge management options including long-term impacts after land application[J]. Journal of Cleaner Production, 2018, 174: 538-547. doi: 10.1016/j.jclepro.2017.10.175
|
[3] |
WANG X D, CHI Q Q, LIU X J, et al. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge[J]. Chemosphere, 2019, 216: 698-706. doi: 10.1016/j.chemosphere.2018.10.189
|
[4] |
WANG Y, WEI H, ZHAO Y, et al. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst[J]. Journal of Hazardous Materials, 2017, 326: 36-46. doi: 10.1016/j.jhazmat.2016.12.014
|
[5] |
余丽, 刘允康, ATTI M, 等. CWPO体系中污泥炭催化降解头孢氨苄废水[J]. 环境化学, 2020, 39(5): 1262-1270. doi: 10.7524/j.issn.0254-6108.2019050602
|
[6] |
HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2007, 141(3): 819-825. doi: 10.1016/j.jhazmat.2006.07.049
|
[7] |
LU X Q, ZHEN G Y, NI J L, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017, 108: 137-150. doi: 10.1016/j.watres.2016.10.073
|
[8] |
ZHAO Q, YU M, LU H, et al. Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process[J]. Bioresource Technology, 2019, 291: 121871. doi: 10.1016/j.biortech.2019.121871
|
[9] |
SMITH K M, FOWLER G D, PULLKET S, et al. The production of attrition resistant, sewage-sludge derived, granular activated carbon[J]. Separation and Purification Technology, 2012, 98: 240-248. doi: 10.1016/j.seppur.2012.07.026
|
[10] |
SHI L, ZHANG G, WEI D, et al. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions[J]. Journal of Mollecular Liquids, 2014, 198: 334-340. doi: 10.1016/j.molliq.2014.07.023
|
[11] |
WANG M, TIAN J, ROBERTS D G, et al. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel, 2015, 142: 102-108. doi: 10.1016/j.fuel.2014.11.003
|
[12] |
YU Y, WEI H, YU L, et al. Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism[J]. RSC Advances, 2015, 5(52): 41867-41876. doi: 10.1039/C5RA00858A
|
[13] |
YU Y, WEI H, YU L, et al. Catalytic wet air oxidation of m-cresol over a surface-modified sewage sludge-derived carbonaceous catalyst[J]. Catalysis Science & Technology, 2016, 6(4): 1085-1093.
|
[14] |
TU Y, XIONG Y, TIAN S, et al. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts[J]. Journal of Hazardous Materials, 2014, 276: 88-96. doi: 10.1016/j.jhazmat.2014.05.024
|
[15] |
STREIT A F M, CORTES L N, DRUZIAN S P, et al. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions[J]. Science of the Total Environment, 2019, 660: 277-287. doi: 10.1016/j.scitotenv.2019.01.027
|
[16] |
WANG Y, WEI H, ZHAO Y, et al. Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol[J]. Green Chemistry, 2017, 19(5): 1362-1370. doi: 10.1039/C6GC03001G
|
[17] |
YI Y, TU G, ZHAO D, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor[J]. Chemical Engineering Journal, 2019, 360: 212-220. doi: 10.1016/j.cej.2018.11.205
|
[18] |
YU L, LIU Y, WEI H, et al. Developing a high-quality catalyst from the pyrolysis of anaerobic granular sludge: Its application for m-cresol degradation[J]. Chemosphere, 2020, 255: 126939. doi: 10.1016/j.chemosphere.2020.126939
|
[19] |
ZHAO L, SUN Z, MA J, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(6): 2047-2053.
|
[20] |
LIU X, HUANG F, YU Y, et al. Ofloxacin degradation over Cu-Ce tyre carbon catalysts by the microwave assisted persulfate process[J]. Applied Catalysis B: Environment, 2019, 253: 149-159. doi: 10.1016/j.apcatb.2019.04.047
|
[21] |
BEDIA J, MONSALVO V M, RODRIGUEZ J J, et al. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO[J]. Chemical Engineering Journal, 2017, 318: 224-230. doi: 10.1016/j.cej.2016.06.096
|
[22] |
HINOJOSA M M, OLLER ALBEROLA I, MALATO RODRIGUEZ S, et al. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process[J]. Water Research, 2019, 156: 232-240. doi: 10.1016/j.watres.2019.02.055
|
[23] |
HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins[J]. Environmental Science & Technology, 2018, 52(16): 9188-9195.
|
[24] |
HE J, ZHANG Y, GUO Y, et al. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms[J]. Environment International, 2019, 132: 105105. doi: 10.1016/j.envint.2019.105105
|