-
近年来,我国城镇居民用水量不断增大,给水厂自来水产量也随之提高[1]。在自来水生产的同时,会产生大量的污泥,这部分污泥源于生产工艺中的沉淀池排泥水和滤池反冲洗水,主要为原水中的无机颗粒、有机物以及净水过程中投加的混凝剂[2]。其产量约占自来水总生产水量的4%~7%,为避免资源浪费,应设法将其回收利用[3-4]。
化学调理脱水是污泥脱水常用的方法[5]。常用的化学调理剂有PAM等有机高分子调理剂和铁系、铝系等无机调理剂[6]。PAM在较少的投加量下便可达到较理想的效果,如给水厂中常用阳离子PAM来对污泥进行调理,但其具有轻微毒性,泥水分离后的水不能回用,会对给水厂造成较大的损失。铁系混凝剂絮体形成快,但本身不稳定,且投加到水体中存在色度问题[7-8]。对于铝系混凝剂而言,由于铝形态的不同,其絮凝效果和机理也相应不同[9]。羟基铝盐絮凝剂的形态可分为Ala、Alb、Alc。Ala为低聚态铝,如单体铝AlCl3;Alb为中聚态铝,如Al13(分子式为[AlO4Al12(OH)24(H2O)12]7+);Alc为高聚态铝,如Al30。相对于单体铝来讲,聚合铝具有投加量少、污泥产生量少、电中和能力高、对pH和温度有更高的适应能力等优点[10]。Al13是铝离子水解过程的中间产物,是一种高电荷的纳米粒子。与其他混凝剂相比,Al13电中和能力更强,其在混凝、除氟和污泥调理等方面均有应用[11]。刘沛[8]和CAO等[9]分别将AlCl3和Al13应用于市政污泥脱水,发现经二者调理后的污泥脱水性能均有提高,而且Al13的效果更为显著。
本研究采用无机盐调理剂AlCl3与自制Al13溶液对给水厂污泥进行调理,探究不同的药剂投加量对毛细脱水时间和污泥比阻的影响,并分析污泥调理过程中絮体粒径及形态的变化,从而得出2种调理剂形成的絮体特征;最后,结合2种药剂对有机物的去除率、调理后污泥上清液的余铝含量,比较其实际应用潜力。
AlCl3和Al13对给水厂污泥调理效果的比较
Comparison of the effect of AlCl3 and Al13 on sludge conditioning in water supply plant
-
摘要: 为比较2种铝盐混凝剂AlCl3和Al13对给水厂污泥调理脱水的效果,通过测定污泥调理前后的毛细吸水时间(CST)、污泥比阻(SRF)、溶解性有机污染物含量(DOC)、上清液余铝含量以及调理过程中絮体粒径和分形维数的变化,并结合三维荧光谱图分析溶液中有机物的组成和含量,来评价2种调理剂的调理效果。结果表明,以Al含量计,Al13和AlCl3的最佳投加量分别为0.336和0.800 g·L−1;在最佳投加量下,Al13和AlCl3调理后的污泥CST分别为33.1和34.8 s、污泥比阻分别为4.98×1012和5.45×1012 m·kg−1,Al13在投加量较少的情况下便可取得良好的脱水效果。结合扫描电镜图和絮体粒径动态变化可知,Al13在调理过程中形成的絮体相对AlCl3絮体粒径较小,二者分形维数差别不大。在处于最佳投加量时,Al13调理污泥上清液DOC和余铝分别为14.27和1.20 mg·L−1,小于AlCl3的21.93和154.00 mg·L−1,可知,经Al13调理的污泥上清液更适合回用。本研究结果可为给水厂污泥化学调理脱水药剂的选择提供参考。Abstract: The sludge of water supply plant are conditioned by AlCl3 and Al13, and the performance of them are evaluated by measuring capillary suction time (CST), specific resistance to filtration (SRF), dissolved organic matter content (DOC), residual aluminum of conditioned sludge’s supernatant, the particle size and fractal dimension of flocs and analyzing the composition and content of organics by three-dimensional excitation emission matrix fluorescence (3D-EEM). The optimal dosage of Al13 is 0.336 g·L−1 while AlCl3 is 0.800 g·L−1 (measured by aluminum content). Under the optimal dosage, the CST of the sludge after Al13 and AlCl3 conditioning is 33.1 and 34.8 s, and the SRF is 4.98×1012 and 5.45×1012 m·kg−1, respectively. Al13 can achieve a good dewatering effect under the condition of less dosage. The results of SEM and the dynamic change of particle size indicated that the flocs conditioned by Al13 are small, while the flocs conditioned by AlCl3 are large. DOC and residual aluminum of the sludge conditioned by Al13 are 14.27 mg·L−1 and 1.20 mg·L−1, respectively, which are less than 21.93 mg·L−1 and 154.00 mg·L−1 of AlCl3. Therefore, the supernatant of the sludge conditioned by Al13 is more suitable for reuse. The results of this study shows that Al13 has an advantage over AlCl3 in water supply plant sludge conditioning, and it can give an idea for optimizing the sludge conditioning process.
-
Key words:
- AlCl3 /
- Al13 /
- aluminum speciation /
- water supply plant sludge conditioning /
- sludge dewatering
-
表 1 污泥基本性质
Table 1. Basic properties of sludge
含水率/% 有机质/% pH CST/s d0.5/μm SRF/
(1013 m·kg−1)98.5 30.9 7 77.5 51.13 1.63 注:d0.5表示污泥中体积累积百分比为50%时颗粒的最大直径。 -
[1] 赵卫华. 居民家庭用水量影响因素的实证分析: 基于北京市居民用水行为的调查数据考察[J]. 干旱区资源与环境, 2015, 29(4): 137-142. [2] 穆丹琳. 城市给水厂污泥特性调研及调理实验研究[D]. 西安: 西安建筑科技大学, 2015. [3] LI Z F, JIANG N, WU F F, et al. Experimental investigation of phosphorus adsorption capacity of the waterworks sludges from five cities in China[J]. Ecological Engineering, 2013, 53(4): 165-172. [4] 陈洋. 给水厂污泥陶粒的制备及其在废水除磷中应用的研究[D]. 济南: 山东大学, 2017. [5] CHENG G, LI Q, SU Z, et al. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands[J]. Journal of Cleaner Production, 2018, 175(4): 572-581. [6] 王晓萌, 王鑫, 杨明辉, 等. 铝、铁、钛3种金属盐基混凝剂调理污泥的性能比较[J]. 环境科学, 2018, 39(5): 2274-2282. [7] 马琦. 高性能聚氯化铁混凝剂的制备及应用研究[D]. 西安: 陕西科技大学, 2019. [8] 刘沛. 调理剂改善污泥脱水性能的比较研究[D]. 西安: 陕西科技大学, 2017. [9] CAO B D, ZHANG W J, WANG Q D, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J]. Water Research, 2016, 105(21): 615-624. [10] YANG P, LI D D, ZHANG W J, et al. Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant: Effects of typical sludge properties[J]. Chemosphere, 2019, 218(3): 930-940. [11] 王东升, 安广宇, 刘丽冰, 等. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. [12] 赵华章, 栾兆坤, 苏永渤. Al13形态的分离纯化与表征[J]. 高等学校化学学报, 2002, 23(5): 751-755. doi: 10.3321/j.issn:0251-0790.2002.05.001 [13] NIU M Q, ZHANG W J, WANG D S, et al. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants[J]. Bioresource Technology, 2013, 144(17): 337-343. [14] 熊巧. 活化过硫酸盐-生物质复合调理污泥脱水性能与机理研究[D]. 武汉: 武汉大学, 2018. [15] SUN H Y, JIAO R Y, XU H, et al. The influence of particle size and concentration combined with pH on coagulation mechanisms[J]. Journal of Environmental Sciences, 2019, 82(8): 39-46. [16] WU H, LIU Z Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water[J]. Water Research, 2016, 96(11): 126-135. [17] ZHOU Z W, YANG Y L, LI X, et al. Optimized removal of natural organic matter by ultrasound-assisted coagulation of recycling drinking water treatment sludge[J]. Ultrasonics Sonochemistry, 2018, 48(6): 171-180. [18] ZHANG W, XU Y, DONG B, et al. Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches[J]. Science of the Total Environment, 2019, 675(14): 184-191. [19] ZHANG W J, XIAO P, LIU Y Y, et al. Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability[J]. Separation and Purification Technology, 2014, 132(8): 430-437. [20] YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949. [21] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138(13): 181-191. [22] JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal mature of natural organic matter flocs[J]. Environmental Science & Technology, 2005, 39(7): 2307-2314. [23] 任鹏飞. 基于颗粒形态变化的变速沉淀过程稳定性控制机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [24] TANG P, GREENWOOD J, RAPER J A. A model to describe the settling behavior of fractal aggregates[J]. Journal of Colloid Interface Science, 2002, 247(1): 210-219. doi: 10.1006/jcis.2001.8028 [25] YAN M Q, WANG D S, NI J R, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370. doi: 10.1016/j.watres.2008.04.017