[1] 赵卫华. 居民家庭用水量影响因素的实证分析: 基于北京市居民用水行为的调查数据考察[J]. 干旱区资源与环境, 2015, 29(4): 137-142.
[2] 穆丹琳. 城市给水厂污泥特性调研及调理实验研究[D]. 西安: 西安建筑科技大学, 2015.
[3] LI Z F, JIANG N, WU F F, et al. Experimental investigation of phosphorus adsorption capacity of the waterworks sludges from five cities in China[J]. Ecological Engineering, 2013, 53(4): 165-172.
[4] 陈洋. 给水厂污泥陶粒的制备及其在废水除磷中应用的研究[D]. 济南: 山东大学, 2017.
[5] CHENG G, LI Q, SU Z, et al. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands[J]. Journal of Cleaner Production, 2018, 175(4): 572-581.
[6] 王晓萌, 王鑫, 杨明辉, 等. 铝、铁、钛3种金属盐基混凝剂调理污泥的性能比较[J]. 环境科学, 2018, 39(5): 2274-2282.
[7] 马琦. 高性能聚氯化铁混凝剂的制备及应用研究[D]. 西安: 陕西科技大学, 2019.
[8] 刘沛. 调理剂改善污泥脱水性能的比较研究[D]. 西安: 陕西科技大学, 2017.
[9] CAO B D, ZHANG W J, WANG Q D, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J]. Water Research, 2016, 105(21): 615-624.
[10] YANG P, LI D D, ZHANG W J, et al. Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant: Effects of typical sludge properties[J]. Chemosphere, 2019, 218(3): 930-940.
[11] 王东升, 安广宇, 刘丽冰, 等. Al13的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584.
[12] 赵华章, 栾兆坤, 苏永渤. Al13形态的分离纯化与表征[J]. 高等学校化学学报, 2002, 23(5): 751-755. doi: 10.3321/j.issn:0251-0790.2002.05.001
[13] NIU M Q, ZHANG W J, WANG D S, et al. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants[J]. Bioresource Technology, 2013, 144(17): 337-343.
[14] 熊巧. 活化过硫酸盐-生物质复合调理污泥脱水性能与机理研究[D]. 武汉: 武汉大学, 2018.
[15] SUN H Y, JIAO R Y, XU H, et al. The influence of particle size and concentration combined with pH on coagulation mechanisms[J]. Journal of Environmental Sciences, 2019, 82(8): 39-46.
[16] WU H, LIU Z Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water[J]. Water Research, 2016, 96(11): 126-135.
[17] ZHOU Z W, YANG Y L, LI X, et al. Optimized removal of natural organic matter by ultrasound-assisted coagulation of recycling drinking water treatment sludge[J]. Ultrasonics Sonochemistry, 2018, 48(6): 171-180.
[18] ZHANG W, XU Y, DONG B, et al. Characterizing the sludge moisture distribution during anaerobic digestion process through various approaches[J]. Science of the Total Environment, 2019, 675(14): 184-191.
[19] ZHANG W J, XIAO P, LIU Y Y, et al. Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability[J]. Separation and Purification Technology, 2014, 132(8): 430-437.
[20] YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949.
[21] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138(13): 181-191.
[22] JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal mature of natural organic matter flocs[J]. Environmental Science & Technology, 2005, 39(7): 2307-2314.
[23] 任鹏飞. 基于颗粒形态变化的变速沉淀过程稳定性控制机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[24] TANG P, GREENWOOD J, RAPER J A. A model to describe the settling behavior of fractal aggregates[J]. Journal of Colloid Interface Science, 2002, 247(1): 210-219. doi: 10.1006/jcis.2001.8028
[25] YAN M Q, WANG D S, NI J R, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370. doi: 10.1016/j.watres.2008.04.017