数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响

邱俊, 陈强, 李建龙, 吴代赦. 数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响[J]. 环境工程学报, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
引用本文: 邱俊, 陈强, 李建龙, 吴代赦. 数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响[J]. 环境工程学报, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
QIU Jun, CHEN Qiang, LI Jianlong, WU Daishe. Numerical simulation of the effect of dust cake loading in filter cartridge on pulse injection[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
Citation: QIU Jun, CHEN Qiang, LI Jianlong, WU Daishe. Numerical simulation of the effect of dust cake loading in filter cartridge on pulse injection[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040

数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响

    作者简介: 邱俊(1984—),男,博士研究生。研究方向:环保工艺与设备。E-mail:1942760689@qq.com
    通讯作者: 李建龙(1988—),男,博士,副教授。研究方向:大气污染控制技术与装备。E-mail:jlli@ncu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(51704166);南昌大学研究生创新专项(CX2019109)
  • 中图分类号: X513

Numerical simulation of the effect of dust cake loading in filter cartridge on pulse injection

    Corresponding author: LI Jianlong, jlli@ncu.edu.cn
  • 摘要: 脉冲喷吹清灰进行滤筒的再生是实现除尘器稳定、高效、长期运行的必要环节,对滤筒脉喷清灰性能的研究具有重要意义。目前,对脉喷过程的数值模拟普遍基于干净的滤筒,负载尘饼对喷吹过程的影响尚考虑不足。以滤筒除尘器装置为研究对象,考察滤筒负载尘饼对脉冲喷吹性能的影响,建立了脉冲喷吹的CFD数值模型用其对清灰流场进行模拟,并进行了实验验证。结果表明:脉冲喷吹压力在滤筒内自下而上蓄积,滤筒尘饼负载量越多,则滤筒内部蓄积的压力越大、喷吹强度越高、均匀性越好、穿过滤筒的喷吹气流越少;与固定尘饼负载量(喷吹过程尘饼不剥离)相比,考虑尘饼剥离的情形下脉喷后期的气流出现了明显上升;尘饼剥离条件下的脉喷性能介于尘饼负载固定与干净滤筒二者之间,且相对接近于尘饼负载固定的情形。以上结果可为脉喷清灰除尘器的设计提供参考。
  • 近年来,畜禽养殖过程中产生的大量粪污引起了严重的环境污染,已严重阻碍了畜禽养殖业的可持续发展[1-2]。未经处理的畜禽粪污富含致病菌且成分不稳定,在储存过程中会释放大量甲硫醇、氨气、硫化氢和丙烯醛等10多种恶臭有毒还原性气体,严重危及人畜健康[3-4]。然而,畜禽粪污作为一种富含氮、磷、钾等营养物质的有机固体废物,又是可用于促进农作物生长的重要肥料资源[5-6]。堆肥技术主要是通过微生物对畜禽粪污中不稳定的有机物质进行降解,生成稳定的腐殖质类物质,从而将其转化为高价值有机肥料,实现畜禽粪污的资源化利用[7-8]。畜禽粪污堆肥处理不仅可以解决环境污染问题,而且所得的肥料有助于改善土壤环境、提高土壤肥力,对实现畜禽业及农业可持续发展具有重要意义[9]

    好氧堆肥法可有效地脱臭及灭菌,有利于肥料的养分保持,是我国畜禽粪便处理的主要方式。然而,现有的好氧堆肥反应器在堆肥过程中存在非自动化、物料腐熟度差异大、控温困难、氮损失严重等缺陷,限制了好氧堆肥反应器的广泛应用[10-12]。因此,加快低成本、环保型、高效自动化堆肥反应器的开发,对促进畜禽粪污肥料化应用尤为重要。

    本研究采用可调控式新型高温好氧堆肥器,以谷壳(粉)作为堆肥辅料,分析鸡粪谷壳在堆肥过程中的理化性质,并利用吸收塔将堆肥过程中释放的氨气转化为磷酸铵镁(MAP),再添加至鸡粪谷壳有机肥料中,从而生产出优质商品有机缓释肥料。

    鸡粪和谷壳原料化学特性见表1。堆肥菌种为自筛选获得的以嗜热好氧纤维素分解菌为主体的堆肥混合菌群,主要包括真菌、放线菌、耐热芽孢杆菌等菌种,活菌总数每克大于20×108个。

    表 1  鸡粪和谷壳的化学特性
    Table 1.  Chemical properties of chicken manure and rice chaff
    供试原料碳/%氮/%碳氮比含水量/%pH
    鸡粪18.87±0.951.51±0.1412.49±0.3240.34±1.248.82±0.52
    谷壳41.00±2.34<0.30>13610.23±0.58
     | Show Table
    DownLoad: CSV

    新型高温好氧堆肥器主要由控制面板、发酵罐、空压机通风系统、气体吸收塔等4个部分组成(图1)。其中,控制面板用于控制堆肥器内物料的温度及发酵罐的搅拌频率,同时显示堆肥器湿度。发酵罐总容积设计为75 L,根据《搅拌与混合设备设计选用手册》[13]中反应罐有效容积计算,有效容积为50 L。发酵桶为圆柱体桶装结构(Ф60 cm×40 cm),采用旋转式搅拌。空压机通风系统采用入功率0.37 W、输出转速5~25 r·min−1。气体吸收塔的容积为188 L,塔内装有Ф25 mm的塑料阶梯环填料,用于吸收堆肥发酵过程逸出的氨气,以镁盐沉淀剂转化为磷酸铵镁(MAP)。塔式发酵罐的容量为30 L,运行物料容量为20 L,罐体内部用聚氨酯作保温层,罐体采用全封闭式,发酵产生的废气经处理系统处理后,直接排除罐外。采用涡轮上翻搅拌及液压驱动,以保证罐体内腐熟物满载荷运行。

    图 1  新型高温好氧堆肥器设计图及实体图
    Figure 1.  Illustration and stereogram of new high-temperature aerobic composting device

    本实验采用鸡粪和谷壳粉按C/N=25混合,再用去离子水调节混合物料水分含量至60%,并搅拌混匀得堆肥物料,最后添加菌剂于堆肥反应器中进行发酵反应。塔式发酵罐进行的实验堆料高度定为50 cm,物料重20 kg,堆肥时间40 d。新型堆肥器处理物料50 kg,每48 h自动搅拌1次,每次5 min,总堆肥时间为40 d。采用五点取样法采集堆肥样品,分别采集了第0、1、2、5、7、9、11、34、39、40 d的样品,每份取样50 g装于自封袋中密封,并于4 ℃条件下保存。

    1)鸡粪谷壳有机肥料有效性评估。取12个花盆(25 cm×20 cm),分为空白组、化肥组(尿素46% TN)和鸡粪谷壳有机肥(以下简称“有机肥”)组,每组4盆,每盆约3 kg土壤,种植15粒空心菜种子。空白组不添加肥料;化肥组在土壤中添加3.88 g尿素(与有机肥组等量的含氮量计算得出);有机肥组在土壤中添加鸡粪谷壳经新型堆肥器堆肥40 d后产生的100 g肥料(1.86 g TN、3.27 g TP、1.57 g TK)。花盆置于户外种植,每日浇水1次,每7 d进行1次大水量灌溉,发芽后栽培30 d采收。

    2)MAP肥料有效性评估。采用盆栽实验评估新型堆肥系统回收氨气产生MAP的肥效性。盆栽实验设4个处理组:T1为对照组(不施肥)、T2为有机肥组、T3为有机肥+MAP组(有机肥和MAP各占50%)、T4为MAP组。各处理组的TN含量相同,每组3盆验,每盆约3 kg土壤,种植10粒小白菜种子。空白组不添加肥料;其他组每盆按1 kg土壤添加0.5 gTN计算添加肥料的量。待种子发芽后,每盆保留6~8株生长相近的幼苗进行后期分析。

    1)气味、色泽及形状评估。采用感官评估法,每次5人对样品进行样品气味、色泽及形状进行评估。其中,气味评估主要包含粪尿味、臭味较淡、臭味较浓、臭味强烈、无臭5个等级;色泽主要包含灰褐色、褐色、黑色3个等级;样品形状主要有块状、粒状及球状3个等级。

    2)温度及pH测定。每天测定肥堆上、中、下3个层次的温度,计算平均值并记录室温;将新鲜堆肥样品与水按1:10(质量体积比)比例混合振荡2 h,上清液测定pH。

    3)化学成分测定、种子发芽率测定和16sRNA序列分析。总碳、总氮、水分含量、钾含量测定方法参考文献[14];可溶性糖测定参考文献[15];种子发芽率(GI)的测定参考文献[16];16sRNA序列分析参考文献[17]

    根据图2表2可知,随着堆肥化的进程,堆体表观发生了显著的变化。堆体颜色由最初的灰褐色逐渐转变成黑褐色,由局部的黏稠状逐渐转变为疏松且具有一定结构的状态。此外,随着堆肥时间的延长,鸡粪有机肥料的臭气味逐渐消失,最后无臭味(表2)。该现象可能的原因主要是,微生物降解有机物产生的硫化物及叠氮化物等引起的,之后随着微生物逐渐死亡,使得臭气味消失。物料在反应器中连续发酵40 d后,堆体由灰褐色的带有粪尿臭的块状固体堆肥逐渐形成黑色的无臭味的圆球状(如图2)。在堆肥过程中,堆体表观状态的变化,符合典型腐熟堆肥的情况。

    图 2  鸡粪谷壳物料在新型高温好氧堆肥器中堆肥过程中形貌图变化
    Figure 2.  Changes of chicken manure and rice chaff morphology during composting in new high-temperature aerobic composting device
    表 2  物料堆肥期间表观状态的变化
    Table 2.  Changes of apparent state of materials during composting
    堆肥时间/d气味色泽形状
    1粪尿味灰褐色块状
    2臭味较淡灰褐色块状
    5臭味较浓灰褐色粒状
    11臭味强烈褐色粒状
    34臭味较浓褐色球状
    39臭味较淡黑色球状
    40无臭味黑色球状
     | Show Table
    DownLoad: CSV

    温度是监测堆肥过程性能的主要参数之一。堆肥的热量是微生物通过降解有机物质,在促进自身生长的同时产生的。由图3(a)可知,新型堆肥器和塔式发酵罐中堆体的温度变化趋势主要分为3个阶段。第1阶段为快速升温期,由起始温度升至峰值温度。新型堆肥器和塔式发酵罐中堆体温度均从第5 d开始快速升温,分别在第9、11 d达到峰值温度,其峰值温度分别为63.2 ℃、52.8 ℃。在堆肥前期,好氧微生物可快速分解物料中的可降解有机物并释放能量,使得堆肥温度急剧升高[17-18]。新型堆肥器在堆肥过程中对物料进行了适当的滚筒式翻动,这有利于微生物的扩繁增殖和氧气的传输,从而提高好氧微生物的活性、物料中有机物的降解速率及能量的释放,因此,新型堆肥器中的堆体升温速率高于塔式发酵罐。第2阶段为缓慢降温期,即堆体中峰值温度缓慢下降至略高于室温的时期。新型堆肥器中堆体温度下降速度低于塔式发酵罐中的堆体。新型堆肥器和塔式发酵罐中堆体的降温期分别需要30及25 d左右。堆体中有机物含量不足,微生物活性及释放热量的下降,导致温度逐渐降低。此外,由于新型堆肥器具有较好的保温效果,因此,堆体温度下降速度较慢。新型堆肥器中堆体温度在第7~30 d保持在50 ℃以上,共23 d,符合高温堆肥的要求(GB7959-1987,粪便无害化卫生标准)。第3阶段为腐熟期,堆肥40 d后,新型堆肥器和塔式发酵罐中的堆体温度几乎与室温保持一致,无法继续往下降,因此,可以认定堆肥反应基本结束。

    图 3  鸡粪谷壳粉堆肥过程中堆体温度、水分及pH变化
    Figure 3.  Change of temperature (a), moisture (b) and pH (c) in chicken manure and rice chaff during composting

    由于水分含量的高低与微生物活性和温度密切相关,鸡粪谷壳粉堆肥过程保持在适当的水分含量,可有效提高堆肥的效果。堆肥的最佳初始含水量一般在55%~65%,此含水量能够为微生物提供合适的湿度环境[19-20]。因此,在本实验中,鸡粪谷壳的水分含量控制在60%左右。在鸡粪谷壳粉堆肥过程中,水分含量呈现逐渐下降的趋势。由图3(b)可知,堆肥11 d后,新型堆肥器中的物料水分含量由60%逐渐下降到50%,而塔式发酵罐中物料水分由60%下降到40%,经40 d堆肥之后分别降低至29.24%和26%。堆肥过程中物料水分下降的主要原因是,在微生物分解有机质、消耗水分及堆肥过程中,不间断的通气搅拌导致了水分的损失[21-22]。新型堆肥器中,物料中水分损失速率低于塔式发酵罐。这主要是由于:1)在新型堆肥器中散状的物料经过不间断的通气和搅拌结成圆球状阻碍了水分蒸发,而塔式发酵罐中的原料在堆肥过程中是处于散状的;2)在新型堆肥器是一个相对密闭的装置可有效防止水分蒸发,而塔式发酵罐是自然通风且比表面积较大,因而加速了水分的挥发。

    图3(c)可知,新型堆肥器中物料的pH由8.02逐渐增加至8.65,之后下降至8.51,呈现先上升后下降的趋势;而塔式发酵罐中的物料pH也呈现类似的变化,但变化幅度低于新型堆肥器。在新型堆肥器中,堆体温度较高,嗜热微生物代谢蛋白质,导致氨氮的不断产生,最终使得pH持续升高,并且高于塔式发酵罐中的物料pH[23]。而在后期,因物料结构过于致密导致孔隙度过小,不能为微生物提供足够的含氮有机物和O2,造成局部厌氧而导致有机酸积累,最终导致pH降低。

    种子发芽率是评价堆肥腐熟度和植物毒性的重要生物学指标。一般认为,当种子发芽率(GI)达到50%时,病原菌基本被消灭,肥料对植物无毒害影响;如果GI值超过80%则认为堆肥完全腐熟,对植物没有毒性[17]。据图4显示,随着堆肥化的进行,新型堆肥器和塔式发酵罐所得的肥料GI值呈现先增加后保持稳定的趋势。鸡粪谷壳在新型堆肥器处理11 d后,其GI值达到80%左右,可以认为堆肥完全腐熟,之后保持稳定。采用塔式发酵罐堆肥处理24 d后,GI值仅为60%左右,之后保持稳定。表3显示了鸡粪谷壳在新型堆肥器中处理40 d后所得有机肥的主要理化特性,结果显示,鸡粪谷壳有机肥中含有50.53%有机质、1.86%总氮(TN)、3.27%总磷(TP)及1.57%总钾(TK),且无有害菌群,基本达到中华人民共和国农业行业有机肥料标准(NY525-2012)[14]

    图 4  鸡粪谷壳高温好氧堆肥过程中种子发芽率的变化
    Figure 4.  Change of germination rate seed during high temperature aerobic composting of chicken manure and rice chaff
    物料在堆肥期间的种子发芽率
    表 3  鸡粪谷壳有机肥理化指标和国标的对比
    Table 3.  Comparison of physicochemical indexes of chicken manure-rice chaff organic fertilizer with national standard
    对比项目有机质/%TN/%TP/%TK/%TNPK/%水分/%pH
    鸡粪谷壳有机肥50.53±0.121.86±0.313.27±0.531.57±0.126.71±0.8529.24±0.448.46±0.11
    国标(NY525-2012)[14]≥45≥5.0≤305.5~8.5
     | Show Table
    DownLoad: CSV

    通过高通量测序技术所扩增的16S rDNAV4区域特点,分析了鸡粪谷壳在新型堆肥器中高温好氧发酵过程中3个关键性温度阶段细菌群落多样性变化。图5(a)显示了样品升温期、高温期、降温期在属分类水平上最大丰度排名前10的菌种。在升温期,Olivibacter属、Sphingobacterium属的相对丰富度高于高温期和降温期,这2个菌属均具有降解芳香族化合物功能,可有效降解物料中的纤维素及半纤维素;在进入高温期,随着温度的升高和营养物质的消耗,大量嗜温细菌进入休眠或死亡状态,Oceanisphaera属、Ulvibacter属、Luteimonas属、Paenalcaligenes属等嗜热微生物的相对丰富值逐渐提高,有利于纤维素及木质素等有机物的进一步降解。放线菌的丰度增加为堆肥腐熟度的一个标志[24],在降温期,Paucisalibacillus属、Sporosarcina属、Corynebacterium属于放线菌门的系列,其相对丰度值逐渐升高,这表明堆肥物料基本上已经腐熟。

    图 5  堆肥过程中的微生物情况
    Figure 5.  Microorganism in composting process

    在粪污有机肥发酵中,由于大肠杆菌及沙门氏菌易随流水污染水源,从而间接危害人群和畜禽的健康,因此被作为肥料的安全检测指标。由图5(b)可知,在高温阶段,大肠杆菌和沙门沙门氏菌数量最多;随着堆肥的进行,2种菌的数量快速下降。可见,在高温堆肥过程中,大肠杆菌和沙门氏菌逐渐被消灭。随着堆肥的进行,部分不适宜在堆肥中生存的菌群逐渐优胜劣汰;新型堆肥器在堆肥过程中可以杀灭有害微生物,达到畜禽粪污无害化处理,以保证有机肥料的安全性。

    图6显示了空心菜经过鸡粪谷壳有机肥、化肥和对照盆栽实验30 d后的生长情况。可以看出,盆栽30 d后,有机肥组的株高明显高于化肥组和对照组。通过对空心菜地上可食部分鲜重的分析发现,对照组及化肥组的平均鲜重分别为2.52和3.26 g,而有机肥组空心菜的平均鲜重为4.36 g,分别比对照组和化肥组增加了42.20%和25.22%。通过图7可知,施加有机肥栽培的空心菜其鲜重和可溶性糖含量均明显高于空白对照组与化肥组,这表明有机肥的施加对空心菜的生长与养分积累起到了促进作用。

    图 6  不同肥料条件栽培下30天空心菜生长情况对比
    Figure 6.  Comparison of growth of water spinach for 30 d under different fertilizer conditions
    图 7  不同肥料条件栽培下30天空心菜鲜重和可溶性糖含量的对比
    Figure 7.  Comparison of fresh weight and soluble sugar content of water spinach for 30 d under different fertilizer conditions

    图8显示了不同施肥条件下小白菜的生长情况,可见,新型高温好氧堆肥器回收氨气产生的MAP对盆栽小白菜株高和湿重的提高均有促进作用。结果显示,经过30 d的生长,小白菜的株高在T3组比T2组提高了120%;T4组的也比T2组的提高了40%左右。经过30 d的生长,T3组小白菜地上部分平均湿重为6.02 g,比T2组(4.18 g)和T4组(5.24 g)分别提高了44.02%和14.89%。MAP具有较好的缓释性,若用MAP代替部分氮肥,能有效减少土壤氮素淋洗的损失,从而减少温室气体(NH3)排放,并能起到有缓解土壤酸化等作用。有报道指出,MAP的氮素淋洗损失显著低于尿素,而且其N2O的释放量能够减少75%以上,可为植株的生长提供更为持久的有效养分[25-27]

    图 8  MAP对小白菜生长情况的影响
    Figure 8.  Effect of magnesium ammonium phosphate (MAP) on growth of Chinese cabbage

    1)新型高温好氧堆肥装置具有智能化控制功能,同时并配置了磷酸盐吸收装置以回收堆肥过程中释放的氨气,形成的MAP可作为肥料。

    2)鸡粪谷壳混合物(C/N=25)在新型堆肥器堆肥处理40 d后,可形成黑色无臭味、无有害菌群、圆球状的有机肥,其养分基本达到我国有机肥料标准(NY525-2012)。

    3)鸡粪谷壳有机肥能够缓慢并稳定地释放氮磷钾等植物生长所需的营养元素,有利于空心菜对营养物的吸收;新型堆肥器回收氨气产生的MPA添加至鸡粪谷壳有机肥中,可进一步提高有机肥的整体肥效。

  • 图 1  实验系统示意图

    Figure 1.  Schematic diagram of experimental system

    图 2  几何模型及边界条件

    Figure 2.  Geometric model and boundary conditions

    图 3  实验与模拟数据对比

    Figure 3.  Comparison of experimental and simulated data

    图 4  脉冲喷吹过程中干净滤筒的除尘器内压力云图与流线图

    Figure 4.  Pressure cloud and streamline in dust collector during pulse-jet cleaning under clean filter cartridge

    图 5  干净滤筒条件下各测点脉冲喷吹压力随时间的变化

    Figure 5.  Evolution of pulse-jet pressure with time at measurement points under clean filter cartridge condition

    图 6  不同尘饼负载量条件下除尘器内压力云图与流线图

    Figure 6.  Pressure cloud and streamline in the dust collector under different dust cake conditions

    图 7  不同尘饼负载量条件下各测点脉冲喷吹压力随时间的变化

    Figure 7.  Change of pulse-jet pressure with time at each measurement points under different dust cake loading conditions

    图 8  尘饼剥离条件下各测点脉冲喷吹压力随时间的变化

    Figure 8.  Change of pulse injection pressure with time at each measurement point under dust cake stripping condition

    图 9  不同尘饼负载量条件下脉冲喷吹性能对比

    Figure 9.  Comparison of pulse-jet cleaning performance under varying dust cake conditions

    图 10  不同尘饼负载量条件下进入滤筒的气流流量对比

    Figure 10.  Comparison of air flow into filter cartridge under different dust cake loading conditions

  • [1] 张殿印, 王纯. 脉冲袋式除尘器手册[M]. 北京: 化学工业出版社, 2011.
    [2] 杨燕霞, 张明星, 秦文茜, 等. 脉冲喷吹内置锥形滤筒的清灰性能[J]. 中国粉体技术, 2019, 25(1): 76-80.
    [3] 李建龙, 王安琪, 范博, 等. 除尘器脉喷清灰影响阶段的粉尘分级排放特征[J]. 安全与环境学报, 2018, 18(1): 315-319.
    [4] 秦文茜, 张明星, 康彦, 等. 脉冲喷吹金属滤袋的压力分布影响因素分析[J]. 环境工程学报, 2020, 14(2): 465-472. doi: 10.12030/j.cjee.201904153
    [5] 党小庆, 刘美玲, 马广大, 等. 脉冲袋式除尘器喷吹气流的数值模拟[J]. 西安建筑科技大学学报(自然科学版), 2008, 40(3): 403-406.
    [6] 汪钰. 袋式除尘器脉冲清灰非稳态数值模拟及性能优化[D]. 南昌: 南昌大学, 2011.
    [7] 张情, 钱云楼, 毕远霞, 等. 诱导喷嘴改进滤筒清灰效果的数值模拟[J]. 环境工程学报, 2014, 8(7): 2975-2979.
    [8] 胥海伦, 周苗苗, 张情, 等. 开口散射器对滤筒除尘脉冲清灰效果的影响[J]. 环境工程学报, 2017, 11(8): 4647-4652. doi: 10.12030/j.cjee.201611187
    [9] 万凯迪, 王智化, 胡利华, 等. 袋式除尘器脉冲喷吹清灰过程的数值模拟[J]. 中国电机工程学报, 2014, 34(23): 1-7.
    [10] 董一杰, 张磊, 张松. 低能耗脉冲喷吹袋式除尘器的三维数值模拟及工程应用[J]. 环境工程学报, 2020, 14(3): 761-771. doi: 10.12030/j.cjee.201905043
    [11] LI J L, WANG P, WU D S, et al. Numerical study of opposing pulsed-jet cleaning for pleated filter cartridges[J]. Separation and Purification Technology, 2020, 234: 116086. doi: 10.1016/j.seppur.2019.116086
    [12] FERER M S, DUANE H. A simple model of the adhesive failure of a layer: Cohesive effects[J]. Journal of Applied Physics, 1997, 81(4): 1737-1744. doi: 10.1063/1.365272
    [13] SIEVERT J, LOFFLER F. Fabric cleaning in pulse-jet filters[J]. Chemical Engineering & Processing Process Intensification, 1989, 26(2): 179-183. doi: 10.1016/0255-2701(89)90010-X
    [14] 颜翠平, 张明星, 吕娟, 等. 脉冲喷吹大风量滤筒除尘器的清灰变化过程研究[J]. 环境工程学报, 2016, 10(2): 829-834. doi: 10.12030/j.cjee.20160250
    [15] WU Q Q, LI J L, WU D S, et al. Effects of overall length and od on opposing pulse-jet cleaning for pleated filter cartridges[J]. Aerosol and Air Quality Research, 2020, 20: 432-443. doi: 10.4209/aaqr.2019.10.0527
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.8 %DOWNLOAD: 2.8 %HTML全文: 85.3 %HTML全文: 85.3 %摘要: 11.9 %摘要: 11.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 90.0 %其他: 90.0 %Beijing: 1.9 %Beijing: 1.9 %Bengaluru: 0.0 %Bengaluru: 0.0 %Bieligutai: 0.2 %Bieligutai: 0.2 %Chengdu: 0.1 %Chengdu: 0.1 %Chishiqiao: 0.1 %Chishiqiao: 0.1 %Fort Lee: 0.1 %Fort Lee: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %George Town: 0.1 %George Town: 0.1 %Guiyang: 0.0 %Guiyang: 0.0 %Hangzhou: 0.1 %Hangzhou: 0.1 %Hefei: 0.0 %Hefei: 0.0 %Hotan Diqu: 0.1 %Hotan Diqu: 0.1 %Huangpu Qu: 0.3 %Huangpu Qu: 0.3 %Jinrongjie: 0.1 %Jinrongjie: 0.1 %Kunming: 0.0 %Kunming: 0.0 %Loudi: 0.0 %Loudi: 0.0 %Mountain View: 0.0 %Mountain View: 0.0 %Nanjing: 0.1 %Nanjing: 0.1 %New Taipei: 0.3 %New Taipei: 0.3 %Shanghai: 0.0 %Shanghai: 0.0 %Shenyang: 0.0 %Shenyang: 0.0 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %Singapore: 0.0 %Singapore: 0.0 %Taoyuan District: 0.4 %Taoyuan District: 0.4 %The Bronx: 0.1 %The Bronx: 0.1 %Unadilla: 0.1 %Unadilla: 0.1 %Wenzhou: 0.1 %Wenzhou: 0.1 %Wuhan: 0.0 %Wuhan: 0.0 %Xianyang: 0.0 %Xianyang: 0.0 %Xingfeng: 0.1 %Xingfeng: 0.1 %XX: 3.5 %XX: 3.5 %Yibin: 0.0 %Yibin: 0.0 %Yuncheng: 0.1 %Yuncheng: 0.1 %Yuzhong Chengguanzhen: 0.0 %Yuzhong Chengguanzhen: 0.0 %上海: 0.0 %上海: 0.0 %俄克拉何马城: 0.0 %俄克拉何马城: 0.0 %北京: 0.2 %北京: 0.2 %北海: 0.1 %北海: 0.1 %广州: 0.0 %广州: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 0.3 %深圳: 0.3 %潍坊: 0.0 %潍坊: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.0 %重庆: 0.0 %阳泉: 0.1 %阳泉: 0.1 %其他BeijingBengaluruBieligutaiChengduChishiqiaoFort LeeGaochengGeorge TownGuiyangHangzhouHefeiHotan DiquHuangpu QuJinrongjieKunmingLoudiMountain ViewNanjingNew TaipeiShanghaiShenyangShijiazhuangSingaporeTaoyuan DistrictThe BronxUnadillaWenzhouWuhanXianyangXingfengXXYibinYunchengYuzhong Chengguanzhen上海俄克拉何马城北京北海广州济南深圳潍坊运城郑州重庆阳泉Highcharts.com
图( 10)
计量
  • 文章访问数:  3352
  • HTML全文浏览数:  3352
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-05
  • 录用日期:  2020-10-05
  • 刊出日期:  2021-03-10
邱俊, 陈强, 李建龙, 吴代赦. 数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响[J]. 环境工程学报, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
引用本文: 邱俊, 陈强, 李建龙, 吴代赦. 数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响[J]. 环境工程学报, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
QIU Jun, CHEN Qiang, LI Jianlong, WU Daishe. Numerical simulation of the effect of dust cake loading in filter cartridge on pulse injection[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040
Citation: QIU Jun, CHEN Qiang, LI Jianlong, WU Daishe. Numerical simulation of the effect of dust cake loading in filter cartridge on pulse injection[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 1067-1074. doi: 10.12030/j.cjee.202007040

数值模拟滤筒中负载尘饼对脉冲喷吹清灰效果的影响

    通讯作者: 李建龙(1988—),男,博士,副教授。研究方向:大气污染控制技术与装备。E-mail:jlli@ncu.edu.cn
    作者简介: 邱俊(1984—),男,博士研究生。研究方向:环保工艺与设备。E-mail:1942760689@qq.com
  • 南昌大学资源环境与化工学院,南昌 330031
基金项目:
国家自然科学基金资助项目(51704166);南昌大学研究生创新专项(CX2019109)

摘要: 脉冲喷吹清灰进行滤筒的再生是实现除尘器稳定、高效、长期运行的必要环节,对滤筒脉喷清灰性能的研究具有重要意义。目前,对脉喷过程的数值模拟普遍基于干净的滤筒,负载尘饼对喷吹过程的影响尚考虑不足。以滤筒除尘器装置为研究对象,考察滤筒负载尘饼对脉冲喷吹性能的影响,建立了脉冲喷吹的CFD数值模型用其对清灰流场进行模拟,并进行了实验验证。结果表明:脉冲喷吹压力在滤筒内自下而上蓄积,滤筒尘饼负载量越多,则滤筒内部蓄积的压力越大、喷吹强度越高、均匀性越好、穿过滤筒的喷吹气流越少;与固定尘饼负载量(喷吹过程尘饼不剥离)相比,考虑尘饼剥离的情形下脉喷后期的气流出现了明显上升;尘饼剥离条件下的脉喷性能介于尘饼负载固定与干净滤筒二者之间,且相对接近于尘饼负载固定的情形。以上结果可为脉喷清灰除尘器的设计提供参考。

English Abstract

  • 煤炭、建材、水泥、电力等行业均会产生大量的粉尘颗粒物排放[1],采用除尘装置收集工业排放粉尘具有重要意义。滤筒除尘器具有除尘效率高、阻力适中、价格低、占地面积小等优势,在除尘领域应用广泛[2]。脉冲清灰是除尘器滤筒再生的重要环节,其性能的优劣直接关系到除尘器的稳定运行[3]。脉冲喷吹因其时间短促、影响因素多、气流速度变化快等特点,其清灰机理至今尚无明确定论,常以喷吹压力作为评判喷吹强度的重要指标[2, 4]

    数值模拟作为实验测试的有效补充,对于揭示脉冲喷吹流场具有重要意义。滤筒是滤袋的一种特殊形式,二者的过滤与清灰工艺相似[1]。党小庆等[5]利用CFD方法对ϕ160 mm×6 000 mm的滤袋的脉冲喷吹清灰过程进行了数值模拟,分析了滤袋内壁压力随时间的变化规律,对比了滤袋内各部位压力的分布大小。汪钰[6]采用CFD/CSD耦合计算方法,研究了脉冲清灰过程中喷吹管入口流量、喷嘴个数及其类型对滤袋除尘器清灰性能的影响,获得了袋式除尘器脉冲清灰装置的性能优化方法。张情等[7]采用Fluent数值模拟方法研究了诱导喷嘴条件下ϕ325 mm×660 mm(外径×高度)滤筒内压力的变化规律,分析了脉冲喷吹气流在滤筒内的动压与静压的转变规律,考察了滤筒内各部位的脉冲清灰效果。胥海伦等[8]采用数值计算模拟了开口散射器对滤筒除尘脉冲清灰的作用机制,揭示了不同尺寸散射器条件下滤筒内的流场特征。万凯迪等[9]采用CFD/CSD单向耦合计算对滤袋的脉冲喷吹过程进行了模拟,考虑了滤袋的变形对喷吹流场的影响,得到了不同工况下滤袋壁面峰值压力和最大反向加速度曲线,分析了喷吹压力、喷吹距离、喷嘴直径、滤袋长度等因素对脉冲喷吹效果的影响。董一杰等[10]采用三维CFD研究了滤袋除尘器低能耗脉冲喷吹过程,揭示了喷嘴附近与滤袋内部流场特征。

    脉冲喷吹的数值模拟实现了脉喷清灰作用机制的探究与清灰效果的定量评价,然而,对脉冲喷吹的模拟普遍基于干净的滤筒/滤袋所开展,对尘饼负载影响喷吹过程的考虑不足。本研究采用数值模拟手段考察了尘饼负载条件下滤筒除尘器的脉冲喷吹过程,探究了总过滤阻力为50~2 000 Pa时,干净滤筒、尘饼形成后喷吹气流压力的时空演变、穿过滤筒风量等变化规律,考察了负载尘饼对滤筒脉冲喷吹性能的影响,以期为揭示除尘器滤筒的脉喷清灰作用机制提供参考。

  • 模拟基于脉冲喷吹除尘器实验系统开展,系统结构如图1所示。实验除尘器箱体尺寸(长宽高)为1 225 mm×750 mm×1 550 mm。内部竖直安装滤筒,长度为660 mm、直径为240 mm。滤筒为无纺布长绒棉涤纶材质,滤料厚度为0.6 mm。喷嘴安装在滤筒的正上方,喷嘴内径为12 mm,喷吹高度250 mm。喷吹所用气包容积为19.4 L,初始气包压力为0.5 MPa,喷吹时长设定为150 ms。压力测点布设在滤筒内壁位于滤筒高度1/2的位置,所用传感器为压电陶瓷高频动态压力传感器MYD-1530A(ϕ7 mm×17 mm)。

  • 由于滤筒为中心轴对称结构,为节省计算量,将其简化为二维。同时,将矩形箱体简化为体积相等的圆柱形箱体,保持各部位高度一致,计算得到简化的柱形箱体的水平截面半径为541 mm。除尘器实际出入口直径为150 mm,按照面积相等的原则将其简化为高度5.2 mm的环形出入口,以便于代入轴对称模型中。简化后的模型如图2所示。

  • 采用计算流体力学CFD软件进行流场计算,边界条件的设置见图2。模拟设定喷吹过程的流体为可压缩、非稳态、等温、湍流的状态。喷吹过程不考虑粉尘的运移,忽略滤筒的形变。选用Realizable k-ε湍流模型求解,采用压力-速度耦合算法。

    脉冲喷吹过程:喷吹气流从滤筒上方的喷嘴喷出,通过实验测试获得喷嘴出口瞬间的压力变化(在气包初始压力0.5 MPa、脉冲宽度0.15 s、喷嘴直径12 mm条件下)。然后对压力随时间的变化曲线进行分段拟合,获得喷嘴出口的压力P随时间t变化的函数(式(1))。将该函数以UDF的形式导入求解器进行计算,时间步长设置为0.000 2 s。

    式中:P为喷嘴出口压力,kPa;t为时间,s。

    多孔介质区(滤料层)的计算是通过在标准的流体方程附加一个动量源Δp来实现(式(2)),该动量源包括黏性损失和惯性损失项。

    式中:μ为层流黏度,Pa·s;α为渗透率,m2C2为压强跃升系数,m−1v为法向速度,m·s−1;∆m为介质厚度,m;ρ为空气密度,kg·m−3

    对于有限厚度的多孔介质的黏性损失项可用达西定律表示,而对于多孔介质内部速度较低的流动,其惯性损失项可忽略[11]。经测试,所用滤料的厚度为0.6 mm,在过滤风速为0.5 m·min−1时,压降为17.9 Pa,其黏性损失系数1/α为2.0×1011 m−2

  • 为考察尘饼附着对脉冲喷吹的影响,将尘饼所产生的附加动量源并入滤料的附加动量源以简化模拟。忽略尘饼厚度的影响,即已知干净滤料条件下,黏性阻力系数为ks=1/α=2×1011 m−2,求得在附着尘饼使得总过滤阻力ΔPt为1 000 Pa(过滤风速0.5 m·min−1)时,对应的总黏性阻力系数k1 000=111.7×1011 m−2。同理求得,总过滤阻力ΔPt为17.9、50、100、200、500、2 000 Pa的黏性阻力系数(k)分别为2×1011、5.6×1011、11.1×1011、22.3×1011、55.7×1011、222.9×1011 m−2

    考虑到尘饼在脉喷清灰过程逐渐剥离,因而k随时间变化,且遵从对数尘饼剥离模型(logarithmic cake release mode)的变化[12]。由此得到在清灰前总过滤阻力为1 000 Pa、清灰后17.9 Pa的理想清灰过程中,黏性阻力系数k1 000~17.9随时间t的变化函数为k1 000~17.9=(−19.99 lnt−26.681)×1011 m−2。确定以上条件,模拟考虑尘饼逐渐剥离的脉喷清灰过程。

  • 网格划分采用结构化网格,划分后网格节点总数为10 000个、元素11 500个。为了验证网格独立性对网格进行加密,加密后网格节点总数为23 400个、元素21 300个。网格加密前后的滤筒内壁中间观测点数据如图3所示,二者曲线几乎吻合,可认为加密前网格已达到网格独立性要求,为本研究所采用。滤筒内壁中间观测点的实验值见图3,经对比可知,模拟值与实验值的总体变化趋势一致,吻合良好,区别在于实验结果的数值波动较大。这可能由于脉冲喷吹过程滤筒筒壁受脉冲喷吹的冲击波作用发生振动,引起传感器的振动,而数值模拟过程未考虑滤筒筒壁振动的影响。

  • 图4为干净滤筒在初始气包压力0.5 MPa、脉冲宽度0.15 s、喷嘴直径12 mm条件下,脉冲喷吹过程中除尘器内静压力云图与流线图。由图4可知,喷吹气流自喷嘴喷射后,卷吸周围空气发生气流扩张并进入滤筒内部。在滤筒内,从压力的空间分布可以看出,喷吹气流静压自滤筒的底部向上蓄积,滤筒底部蓄积较高的静压、而顶部静压较低。在滤筒顶部(即靠近滤筒的开口附近),压力显著低于中下部区域,可推知清灰“死区”易发生在此处。而喷吹压力在水平方向(滤筒径向)梯度很小,从压力分布随时间的变化分析可知,滤筒内压力首先整体持续升高,至t=0.080 s时基本达到稳定,持续至t=0.170 s时刻后减弱。

    为定量比较滤筒内各部位的压力变化,选取5个观测点(P1~P5,参见图4t=0.010 s对应的分图),自上而下等间距依次分布在滤筒内壁。图5为所选取的观测点在脉冲喷吹过程中的静压随时间的变化。由图5可知,脉冲喷吹启动后,各测点发生了不同程度的上升,在t=0.080 s时基本达到稳定,又在t=0.170 s时开始减弱(与压力云图的分析一致)。其中,P1点上升最小,最大值约187.0 Pa;P2次之,其最大值约855.4 Pa;P3~P5相近且压力最大,P3、P4、P5观测点最大压力为1 830.5、1 893.2、1 896.6 Pa。经分析可知,滤筒上部区域的压力梯度大,而中下部区域压力梯度很小。

  • 为了对比滤筒负载尘饼对喷吹压力的影响,设定总过滤阻力ΔPt为50~2 000 Pa,在此条件下,对滤筒负载尘饼进行了脉冲喷吹模拟分析。图6t=0.080 s时,ΔPt分别为50、200、1 000和2 000 Pa的情形下,除尘器内压力云图与流线图。由图6可知,在各尘饼负载量的情况下,喷吹压力在滤筒内均为自下而上蓄积;压力在滤筒下部大、上部小;滤筒上部靠近开口附近的压力显著低于滤筒内部区域;且尘饼负载量越大,滤筒上部的小压力区域空间越小。由此可认为,随着滤筒负载尘饼量的增加,滤筒内蓄积的喷吹压力越大,滤筒上部难清灰区域的脉冲喷吹强度得到提升。

    为定量比较尘饼负载量对喷吹的影响,考察了P1~P5观测点在脉冲喷吹过程中的静压随时间的变化,如图7所示。在总过滤阻力ΔPt分别为50、100、200、500、1 000、2 000 Pa的条件下,滤筒内壁观测点最大压力分别为2 059.2、2 208.1、2 310.9、2 386、2 414.3、2 428.9 Pa(均分布在压力几乎无差异的P3~P5观测点)。在ΔPt为2 000 Pa时,对应的最大喷吹压力是ΔPt为17.9 Pa(干净滤筒)条件下的1.28倍;P2测点的压力次于P3~P5测点;P1测点的压力最小,最大值分别为365.6、538.2、654.3、737.4、769.1、785.2 Pa。在ΔPt为2 000 Pa的条件下P2和P1观测点的最大喷吹压力分别是干净滤筒条件下的1.94、4.20倍。由此可见,滤筒尘饼负载量越多则各观测点压力越大,且负载尘饼对滤筒上部位置脉冲喷吹压力的影响最大。

    SIEVERT等[13]的研究结果表明,对滤料的脉冲喷吹存在一个约400~500 Pa的临界值,达到此临界值才能产生有效清灰。对照本研究的结果,P1测点在ΔPt为17.9 Pa(干净滤筒)和50 Pa条件下均未达到临界值,而在更高总过滤阻力条件下则达到临界值。由此可知,若仅仅采用干净滤筒进行脉冲喷吹研究,容易对清灰预期效果产生误判,错认为未达到清灰临界值,而实际负载尘饼条件下的脉冲喷吹压力会高于干净滤筒条件。

    为考察尘饼在脉喷清灰过程中逐渐剥离对喷吹压力的影响,模拟了清灰前总过滤阻力为1 000 Pa、清灰后17.9 Pa的理想清灰过程,即尘饼剥离的过程(ΔPt为1 000~17.9 Pa的情形)。观测点的静压随时间的变化如图8所示。由图8可知,考虑尘饼剥离情形下的脉冲喷吹压力随时间的变化趋势与尘饼固定的情形类似,均在脉冲喷吹启动后上升,在t=0.080 s时基本达到稳定,又在t=0.170 s时刻开始减弱。喷吹压力的最大值分布在P3~P5测点,约为2 299.3 Pa;P2测点次之,约1 472.6 Pa;P1测点最小,最大值约635.8 Pa。

    将ΔPt为1 000~17.9 Pa条件下喷吹压力的演变与分布单独与ΔPt为1 000 Pa和17.9 Pa(干净滤筒)对比,可发现ΔPt为1 000~17.9 Pa时喷吹压力与ΔPt为1 000 Pa的喷吹压力接近。由此说明,考虑尘饼剥离的情况与仅考虑尘饼负载而不剥离的情况接近,但与干净滤筒的情形相差甚远。

  • 脉冲喷吹的性能一般可用喷吹强度和喷吹的均匀性来表示。各测点正压力峰值的平均值常用于作为喷吹强度的指标,而峰值的变异系数可作为喷吹均匀性指标[11, 14-15]。平均值越大则表明喷吹强度越大,而变异系数越小则表明均匀性越好。图9为不同尘饼负载量条件下脉冲喷吹的强度对比。由图9可知,随着尘饼负载量的增加,脉冲喷吹强度增加,喷吹的均匀性得到改善。在干净滤筒情形下,脉冲喷吹强度为1 332.5 Pa,在尘饼负载ΔPt为1 000、2 000 Pa条件下,喷吹强度分别达到1 932.4、1 948.0 Pa。而在尘饼剥离情形下(即ΔPt为1 000~17.9 Pa)喷吹强度为1 800.7 Pa。结合喷吹均匀性的对比可知,从喷吹性能的角度,考虑尘饼剥离的情形与仅考虑尘饼负载而不剥离的情形接近,且与干净滤筒的情况相差较大。因此,对于脉冲喷吹性能的研究不应忽略滤料负载尘饼的影响。

  • 不同尘饼负载量条件下穿过滤筒的气流流量如图10所示。由图10可知,尘饼负载越多(ΔPt越大),则穿过滤筒的气流越少;在干净滤筒条件下,脉冲喷吹穿过滤筒的气流流量大于喷嘴出口提供的气流流量,而当ΔPt达到50 Pa后,穿过滤筒的气流量小于喷嘴提供的喷吹气量。值得注意的是,在尘饼剥离的条件(ΔPt为1 000~17.9 Pa)下,脉冲喷吹的后期出现了流量的增加.这主要是由于尘饼剥离后期黏性阻力出现明显的下降,对风流的阻力明显降低。

    根据以往经验,在尘饼负载越多的情况下,相同脉冲喷吹条件造成的尘饼剥离会越多。根据本文的模拟结果,尘饼负载量大的情况下,滤筒内蓄积的压力大而通过滤料的风量小。因此,本课题组认为,穿过滤筒的气流流量并不能作为清灰效率的直接指标。当喷吹压力蓄积很大时,尽管通过滤筒的流量很小,但脉冲喷吹对于尘饼的剥离作用很强。

  • 1)脉冲喷吹压力在滤筒内自下而上蓄积,上部压力梯度大而中下部几乎没有压力梯度;滤筒尘饼负载量越多,则滤筒内部蓄积的压力越大、喷吹强度越高、均匀性越好。

    2)负载尘饼量越多,则穿过滤筒的喷吹气流越少;脉冲喷吹过程中,尘饼负载量固定时(喷吹过程尘饼不剥离)不同尘饼负载量条件下穿过滤筒的气流均表现为一致的先上升再下降趋势,但在考虑尘饼剥离的情形下,脉冲喷吹后期的气流出现了明显的上升。

    3)考虑尘饼剥离条件下的脉冲喷吹性能介于尘饼负载固定与干净滤筒二情形之间,且接近于尘饼负载固定情形,而与干净滤筒情形相差较大。因此,对于脉冲喷吹性能的研究不应忽略滤料负载尘饼的影响。

参考文献 (15)

返回顶部

目录

/

返回文章
返回