-
废水资源化处理已经成为国际学术界关注的热点,并被列入联合国可持续发展目标(SDGs)[1]。生活污水中蕴含着大量的资源,其中的热能至少超过了污水处理厂运行电力的9倍[2],氮、磷资源也非常丰富。比利时皇家科学院计算发现,1 t污水可以回收的水资源、有机肥、甲烷、氮、磷等物质的价值在0.41欧元左右,具有重要的经济、生态双重效益[3]。传统的污水处理方法主要以去除污染物质为目标,难以将这些资源回收利用,造成资源浪费。2012年,我国污水排放量为6.85×1010 t,相当于9.61×109 m3甲烷、3.37×106 t氮源、7.17×105 t磷源、1.21×106 t硫源被浪费[4]。此外,传统的污水处理方法还存在着能源损耗大、存在二次污染风险等缺陷。如常规活性污泥法(CAS)的耗能约在0.6 kWh·m−3,其中曝气池耗能就占总能耗的50%左右[5]。美国污水处理厂每年能耗约为1.50×1010 W,占国家总电耗的3.4%,是美国的第3能耗大户;另外,美国在2010—2015年,污水有机物降解产生的CO2高达6×108 t,预计到2050年可能增至10×108 t[6]。因此,污水资源化处理方法的探索已成为未来污水处理技术的首要任务之一,也是环境工程领域亟待攻克的重要课题。
将单纯的污水处理工艺转变为有目的性的资源回收工艺,采用单一的污水处理设备几乎无法实现。目前国内外普遍应用的A/O、AA/O、SBR以及MBR等工艺均是将去污作为唯一或首要目的,污水处理过程中由于有机碳矿化和微生物的生物降解,导致剩余污泥产量少或质量低,污水中蕴含的能量无法回收,因此,传统的污水生物处理工艺难以成为可持续发展技术[2, 7-9]。为实现污水资源化,亟需寻找一种可以实现净能量和资源回收的污水处理手段[10]。厌氧消化产甲烷可将废水中有机物转化为可利用的能量,为达到最大程度回收,应在污水处理过程中避免有机物氧化,从而获得高浓度的优质污泥(更具消化特性)。研究人员[11]开发的高效活性污泥(HiCAS)工艺在去除有机物的同时,能产生大量的优质污泥,其作为一个成功的预浓缩技术受到广泛关注。HiCAS具有高的食物微生物比、低的污泥停留时间(SRT)(一般0.1~2 d)以及较短的HRT,运行负荷高,由微生物内源呼吸引起的生物量损失可降到最小,使水中可溶性有机物最大程度地浓缩、转移到污泥中,产生大量的优质污泥[7, 12-13],因此,该工艺能源回收潜力大,已成功应用于奥地利斯特拉斯以及荷兰鹿特丹的污水处理厂[14-15]。尽管HiCAS工艺具有较强的能源回收潜力,但污水经过该工艺处理后难以直接达到排放标准,因此,需要寻找合适的二级处理工艺与之匹配,使排水达标的同时实现污水中资源的最大化回收利用。
人工湿地(CW)利用生态自净功能去除水中的污染物,可有效避免化学药品的添加和外部能量的输入,经济环保。其中,垂直潜流人工湿地(VSFCW)以好氧条件为主,内部兼有厌氧/缺氧环境,可实现氮、磷的去除[16-18]。湿地植物是人工湿地的重要组成部分,随着污水资源化和可持续发展理念的贯彻实施,景观植物型人工湿地正在向水生蔬菜型人工湿地转型,而空心菜因生命力、生长势、抗逆性(耐寒、耐污)强作为水生经济作物首选,其根系发达、营养元素吸收效率高,同时也可保证周围形成的微生物环境能够高效运行,间接促进湿地内部硝化、反硝化反应进行[18]。如果将空心菜代替人工湿地中的景观植物,直接将污水中的营养物质转化为经济效益,可实现污水中资源最大程度的回收利用。本研究将HiCAS工艺与VSFCW进行组合,选取空心菜为湿地植物,研究了HiCAS-VSFCW组合系统处理生活污水的性能及其资源回收潜力,且进一步探讨了VSFCW内部污染物的去除规律,以期为污水资源化处理提供参考。
高效活性污泥法-人工湿地组合工艺资源化处理生活污水
Resourceful treatment of domestic sewage by the combination of high-rate activated sludge-constructed wetland
-
摘要: 采用高效活性污泥法(HiCAS)-垂直潜流人工湿地(VSFCW)组合工艺,利用好氧生化池(28 L)和人工湿地(65 cm×65 cm×40 cm),在水力停留时间(HRT)为1 h、污泥停留时间(SRT)为0.2 d、水力负荷为4.08 m3·(m2·d)−1、污泥负荷为0.973 kg·(kg·d)-1、持续射流曝气(12 L·min−1)以及(30±2) ℃下进行了研究,评估了组合工艺的污水处理性能及资源化潜能。结果表明:当COD、氨氮、总磷的平均初始浓度分别为306.16、30.24和5.32 mg·L−1时,HiCAS对COD的平均去除率为38.6%,去除1 kg 耗氧有机物(以COD计)可产生0.85 kg干固体,这表明有机碳富集效果显著,消化产能潜力高;HiCAS-VSFCW组合系统对COD、氨氮、总氮、总磷的去除效果显著,平均去除率分别为83.7%、68.3%、76.1%、86.5%,出水满足《城镇污水处理厂污染物排放标准》中的一级A标准(氨氮达到二级标准),同时氮、磷等营养物质保证了湿地植物空心菜的快速生长,实验期间每株空心菜鲜重平均增加25.62 g,植株平均生长20.6 cm。以上研究结果说明此组合工艺具有较大的资源化潜力。Abstract: In this study, the combined process of high-rate activated sludge (HiCAS)-vertical subsurface flow constructed wetland (VSFCW) was used to treat wastewater, containing aerobic biochemical tank (28 L) and constructed wetland (65 cm×65 cm×40 cm). The wastewater treatment performance and resource recovery potential of the combined process were evaluated under the conditions of hydraulic retention time (HRT) of 1 h, sludge retention time (SRT) of 0.2 d, hydraulic loading of 4.08 m3·(m2·d)−1, sludge loading of 0.973 kg·(kg·d)−1, continuous jet aeration (12 L·min−1) and (30±2) ℃. The results showed that when the average initial concentrations of COD, ammonia nitrogen and total phosphorus were 306.16, 30.24 and 5.32 mg·L−1, respectively, the average COD removal efficiency by HiCAS was 38.6%, and each kilogram oxygen-demanding organics removal (as COD) produced 0.85 kg dry sludge, indicating high organic carbon enrichment and digestion capacity potential. Meanwhile, the HiCAS-VSFCW system had significant effects on the removal of COD, ammonia nitrogen, total nitrogen, total phosphorus, with the average removal efficiencies of 83.7%, 68.3%, 76.1% and 86.5%, respectively. The concentrations of COD, total nitrogen and total phosphorus in effluent could meet the first class A standards of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (the ammonia nitrogen reached the secondary standard). At the same time, nutrients such as nitrogen and phosphorus ensured the rapid growth of water spinach in VSFCW. During the experiment, the fresh weight of each Ipomoea aquatica increased by 25.62 g on average, and the average plant growth was 20.6 cm, which has a great potential for resource recovery.
-
[1] United Nations. The sustainable development goals reports[R]. Inter-Agency Meeting on Preparation for the 2017 SDG Reports. New York, 2017. [2] SHIZAS I, BAGLEY D M. Experimental determination of energy content of unknown organics in municipal wastewater streams[J]. Journal of Energy Engineering, 2004, 130(2): 45-53. doi: 10.1061/(ASCE)0733-9402(2004)130:2(45) [3] 穆杨. 探索推动污水资源化利用[N]. 中国环境报, 2018-10-15(3). [4] 冯玉杰, 张照韩, 于艳玲, 等. 基于资源和能源回收的城市污水可持续处理技术研究进展[J]. 化学工业与工程, 2015, 32(5): 20-28. [5] MCCARTY P L, JAEHO B, JEONGHWAN K. Domestic wastewater treatment as a net energy producer: Can this be achieved?[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106. [6] XU W, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature[J]. Science Advances, 2018, 4(8): eaaq0210. doi: 10.1126/sciadv.aaq0210 [7] METCALF, EDDYI. Wastewater Engineering: Treatment and Reuse[M]. McGraw-Hill, New York, 2003. [8] VERSTRAETE W, VLAEMINCK S E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future[J]. International Journal of Sustainable Development and World Ecology, 2011, 18: 253-264. doi: 10.1080/13504509.2011.570804 [9] 李顺. 臭氧氧化-SBR工艺污泥减量效果与出水水质情况试验研究[D]. 重庆: 重庆大学, 2013. [10] JENICEK P, KUTIL J, BENES O, et al. Energy self- sufficient sewage wastewater treatment plants: Is optimized anaerobic sludge digestion the key?[J]. Water Science and Technology, 2013, 68(8): 1739-1744. doi: 10.2166/wst.2013.423 [11] GRADY J C P L, DAIGGER G T, LOVE N G, et al. Biological Wastewater Treatment[M]. CRC Press, Boca Raton, FL, 2011. [12] JIMENEZ J A, LA M E J, PARKER D S. Impact of operational parameters on the removal of particulate chemical oxygen demand in the activated sludge process[J]. Water Environment Research, 2007, 79(9): 984-990. doi: 10.2175/106143007X175717 [13] MEERBURG F A, BOON N, VAN W T, et al. Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics[J]. Bioresource Technology, 2015, 179: 373-381. doi: 10.1016/j.biortech.2014.12.018 [14] WETT B, BUCHAUER K, FIMML C. Energy self-sufficiency as a feasible concept for wastewater treatment systems[C]//IWA. In: IWA Leading Edge Technology Conference, Singapore, 2007: 21-24. [15] CLIPPELEIR H D, VLAEMINCK S E, DE WILDE F, et al. One-stage partial nitritation/anammox at 15 ℃ on pretreated sewage: Feasibility demonstration at labscale[J]. Applied Microbiology and Bciotechnology, 2013, 97(23): 10199-10210. doi: 10.1007/s00253-013-4744-x [16] ÁVILA C, GARFÍ M, GARCÍA J. Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions[J]. Ecological Engineering, 2013, 61: 43-49. doi: 10.1016/j.ecoleng.2013.09.048 [17] VYMAZAL J. The use ofhybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development[J]. Water Research, 2013, 47: 4795-4811. doi: 10.1016/j.watres.2013.05.029 [18] VYMAZAL J, KRÖPFELOVÁ L. Multistage hybrid constructed wetland for enhanced removal of nitrogen[J]. Ecological Engineering, 2015, 84: 202-208. doi: 10.1016/j.ecoleng.2015.09.017 [19] LI J, ELLIOTT D, NIELSEN M, et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions[J]. Biochem Engineering Journal, 2011, 55: 215-222. doi: 10.1016/j.bej.2011.05.002 [20] TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater Engineering: Treatment and Reuse[M]. McGraw-Hill, Boston, 2003. [21] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management-Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015, 87(15): 476-482. [22] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [23] 黄锦楼, 陈琴, 许连煌. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408. [24] 何绪文, 王昊, 林辉, 等. 不同人工湿地基质对氮磷吸附性能研究[C]//武汉大学. 环境污染与大众健康学术会议. 2010: 879-882. [25] 操家顺, 费罗兰, 罗景阳, 等. 新型轻质陶粒生物滤池在启动阶段对模拟尾水的处理效能及微生物群落特征[J]. 净水技术, 2019, 38(1): 82-90. [26] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 33(3): 49-52. [27] 罗隽, 谌建宇, 骆其金, 等. 新型人工湿地对实验室废水的强化脱氮除磷效果[J]. 中国给水排水, 2013, 29(21): 87-90. [28] 李寒, 蒋彬, 赵悬悬, 等. 水生蔬菜型人工湿地对蓝藻消化液中氮、磷的去除[J]. 中国给水排水, 2018, 34(17): 71-76. [29] 朱月明, 黄昭杰, 张毅敏, 等. 关于人工湿地植物的选择及建议[C]//中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集, 厦门, 2017. [30] AKAYENTI I, TEMMINK H, REMY M, et al. Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage[J]. Water Science and Technology, 2010, 61(6): 1433-1439. doi: 10.2166/wst.2010.032 [31] LARREA L, IRIZAR I, HIDALGO M E. Improving the predictions of ASM2d through modelling in practice[J]. Water Science and Technology, 2002, 45(6): 199-208. doi: 10.2166/wst.2002.0107 [32] MAKINIA J, ROSENWINKEL K H, PHAN L C. Modification of ASM3 for the determination of biomass adsorption/storage capacity in bulking sludge control[J]. Water Science and Technology, 2006, 53(3): 91-99. doi: 10.2166/wst.2006.079 [33] 王建龙. 环境工程导论[M]. 4版. 北京: 清华大学出版社, 2010. [34] XU M, LIU W, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J]. Environmental Science and Pollution Research, 2016, 23: 10990-11001. doi: 10.1007/s11356-016-6181-8 [35] 祝志超, 缪恒锋, 崔健, 等. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036. [36] ZHOU X, WANG X, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241: 269-275. doi: 10.1016/j.biortech.2017.05.072 [37] 赵智超, 张为堂, 崔鹏, 等. 生物接触氧化法-人工湿地处理常低温生活污水[J]. 水资源与水工程学报, 2018, 29(5): 31-37. [38] MINCH E V, LANT P, KELLER J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Research, 1996, 30(2): 277-284. doi: 10.1016/0043-1354(95)00174-3 [39] 胡林林, 王建龙, 文湘华, 等. SBR中厌氧颗粒污泥向好氧颗粒污泥的转化[J]. 环境科学, 2004, 25(4): 74-77. doi: 10.3321/j.issn:0250-3301.2004.04.015 [40] 张朝升, 章文菁, 方茜, 等. DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J]. 环境工程学报, 2009, 3(3): 413-416. [41] 林金銮, 张可方, 方茜, 等. DO对同步硝化反硝化协同除磷的影响[J]. 化工环保, 2009, 29(2): 109-120. doi: 10.3969/j.issn.1006-1878.2009.02.003 [42] 吴代顺, 桂丽娟, 侯红勋, 等. COD、MLSS、pH值及污泥驯化对脱氮除磷的影响[J]. 中国给水排水, 2012, 28(13): 125-128. doi: 10.3969/j.issn.1000-4602.2012.13.031 [43] 刘舒巍, 张从轩, 杨兴桐, 等. SBBR与人工湿地组合工艺脱氮除磷[J]. 环境工程学报, 2017, 11(8): 4527-4534. doi: 10.12030/j.cjee.201607247 [44] 王荣昌, 司书鹏, 杨殿海, 等. 温度对生物强化除磷工艺反硝化除磷效果的影响[J]. 环境科学学报, 2013, 33(6): 1535-1544. [45] PIJUAN M, GUISASOLA A, BAEZA J A, et al. Aerobic phosphorus release linked to acetate uptake: Influence of PAO intracellular storage compounds[J]. Biochemical Engineering Journal, 2005, 26: 184-190. doi: 10.1016/j.bej.2005.04.014 [46] ZHANG Z, PAN S, HUANG F, et al. Nitrogen and phosphorus removal by activated sludge process: A review[J]. Mini-Re-views in Organic Chemistry, 2017, 14(2): 99-106. doi: 10.2174/1570193X14666161130151411 [47] 祝贵兵, 等. 生物除磷设计与运行手册[M]. 北京: 中国建筑工业出版社, 2005: 11-20. [48] CECH J S, HARTMAN P. Competition betveen polyphosphate and polysacharide accumulating bacteria in biological phosphorus removal systems[J]. Water Research, 1993, 27: 1219-1225. doi: 10.1016/0043-1354(93)90014-9 [49] 刘旭, 王继华, 车琦, 等. AOA-SBR系统运行效能及高效聚磷菌的特性研究[J]. 环境科学研究, 2019, 32(8): 1427-1436. [50] 林岚, 张彦隆, 曹文志, 等. 同步脱氮除磷技术研究进展[J]. 工业水处理, 2019, 39(10): 7-13. doi: 10.11894/iwt.2018-0901 [51] 操家顺, 侯梁浩, 方芳, 等. 温度及外加碳源对生物脱氮除磷过程的影响[J]. 环境工程学报, 2013, 7(6): 2013-2018. [52] 谷先坤. 生物接触氧化和人工湿地组合工艺处理生活污水尾水研究[D]. 南京: 南京师范大学, 2011. [53] 宋志文, 王仁卿, 席俊秀, 等. 人工湿地对氮、磷的去除效率与动态特征[J]. 生态学杂志, 2005, 24(6): 648-651. doi: 10.3321/j.issn:1000-4890.2005.06.014 [54] 高平平. 人工湿地污染物去除规律与机理及其动力学模型研究[D]. 成都: 西南交通大学, 2017. [55] 周礼川. 新型垂直流人工湿地装置及陶粒基质的开发应用研究[D]. 西安: 西安建筑科技大学, 2013. [56] 张荣新, 焦玉恩, 傅金祥, 等. 不同水力负荷率对潜流人工湿地内部污染物迁移转化的影响[J]. 环境污染与防治, 2018, 40(7): 748-754.