-
纳米FeS作为一种非常有前景的工程修复材料,已经广泛应用于环境修复和危险废物处理中[1-2]。FeS是一种高效还原剂,由于Fe2+和S2−可以作为电子供体,FeS对土壤和地下水中常见污染物有很好的处理效果,例如氯乙烯、六氯乙烷、三氯乙烯、四氯化碳、Cr(Ⅵ)和As等[3-6]。然而传统利用共沉淀的方法合成的FeS纳米颗粒,由于范德华力大、表面能高以及密度大等因素,裸露FeS易于团聚失活,使其在迁移过程中沉积截留在多孔介质当中,导致其迁移受阻[7]。化学反应活性较低的裸露FeS纳米颗粒难以在污染土壤和含水层介质中分散,限制了其在环境修复中的作用[8]。因此,必须将FeS纳米颗粒进行改性,从而增加其稳定性、迁移能力和反应活性。
针对上述现象,一些学者在裸露FeS表面涂覆稳定剂(聚合物或表面活性剂),通过提供空间位阻和静电斥力来限制其聚集[9]。鉴于大分子链上存在大量的羧基和羟基,聚合物稳定剂羧甲基纤维素钠被广泛应用于纳米颗粒(NZVI、FeS)的改性,其可以在纳米粒子的表面形成负电荷,从而提供粒子间的静电排斥力,以提高纳米材料的稳定性和迁移能力[7, 10-11]。海藻酸钠(SA)是多糖类生物大分子,由于其独特的结构性能、安全性和可生物降解性,被广泛用于食品和环境中。从理论上讲,SA可以类似于CMC用作稳定剂,但关于其利用的研究很少[12]。淀粉(ST)也被认为是抑制纳米颗粒(Fe/Pd、Fe3O4和ZVI)聚集的稳定剂[13-14]。GG是从一种豆科植物(瓜尔豆)中提取的高纯化天然多糖,作为剪切稀化流体,在多孔介质中迁移时由于剪切力的作用,可以有效地提高纳米颗粒的迁移能力[15]。FeS纳米材料经过这些高分子聚合物改性之后,不仅能阻碍纳米颗粒团聚,减小粒径,还能提高稳定性,增强纳米材料的反应性及迁移性能[16-18]。
本文利用无毒、低成本、环境友好的4种聚合物作为FeS纳米材料的稳定剂,制备出稳定的CMC-FeS、ST-FeS、GG-FeS和SA-FeS纳米材料,综合研究了改性FeS纳米颗粒的抗沉降性能,在饱和多孔介质中的迁移特性及其稳定化FeS纳米颗粒对地下水中Cr(Ⅵ)去除效率的影响,以期为FeS纳米材料在土壤和地下水的修复提供参考。
稳定化FeS纳米颗粒原位修复地下水中Cr(Ⅵ)的可行性
Feasibility on the in-situ remediation of Cr(Ⅵ) in groundwater with stabilized FeS nanoparticles
-
摘要: FeS纳米材料易团聚易氧化的特点,极大地限制了其工程应用。为此,选用羧甲基纤维素钠(CMC)、淀粉(ST)、瓜尔胶(GG)和海藻酸钠(SA)作为高聚物稳定剂,制得CMC-FeS、ST-FeS、GG-FeS和SA-FeS纳米材料,综合考察了4种改性FeS材料的稳定性、迁移能力及其对Cr(Ⅵ)的反应活性。结果表明,4种高聚物稳定剂主要以羧基通过双齿桥接的形式结合到颗粒表面,从而抑制了颗粒间的团聚。改性后的FeS纳米材料与裸露 FeS相比,FeS纳米颗粒具有更强的稳定性。改性FeS纳米材料在饱和多孔石英砂介质中的迁移能力明显提高,迁移能力随着注入浓度质量的增加、介质粒径的减小而降低。CMC-FeS、ST-FeS和SA-FeS较强的抗沉降性能和迁移能力主要与静电斥力和空间位阻效应的增加有关,对于GG-FeS,空间位阻和剪切稀化特性使其具有一定的稳定性和在多孔介质中良好的迁移能力。与裸露FeS相比,4种改性纳米材料对Cr(Ⅵ)的去除能力均有明显提高,分别提高了67.2%、66.8%、58.4%和67.0%。以上研究结果能够为FeS纳米材料在土壤和地下水的修复提供参考。Abstract: Iron sulphide (FeS) nanoparticles easily agglomerate and oxidize, which greatly limits their engineering applications. In this study, sodium carboxymethyl cellulose (CMC), ST, guar gum (GG), and sodium alginate (SA) were used as polymer stabilizers to prepare stable CMC-FeS, ST-FeS, GG-FeS and SA-FeS nanomaterials, and their stability, migration ability, and reactivity with Cr(Ⅵ) were comprehensively investigated. The results showed that the stabilizers bound to particle surfaces with the bidentate bridging via the carboxylic group, which could provide both electrostatic and steric repulsion to prevent particle aggregation. Compared with bare FeS, the modified FeS nanomaterials had stronger dispersion ability and stability, the migration ability of modified FeS nanomaterials in saturated porous silica sand media improved significantly. The migration ability of the four modified FeS nanomaterials decreased with the increase of the injection concentration mass and the decrease of the medium particle size. The strong anti-settling performance and migration ability of CMC-FeS, ST-FeS and SA-FeS were mainly related to the increase in electrostatic repulsion and steric hindrance effect. For GG-FeS, the characteristics of steric hindrance and shear thinning ensured a certain stability and good migration ability in porous media. Compared with bare FeS, the Cr(VI) removal capacity of the four types of modified nanomaterials improved significantly by 67.2%, 66.8%, 58.4% and 67.0%, respectively. The research results can provide theoretical guidance for the soil and groundwater remediation with FeS nanomaterials.
-
Key words:
- FeS nanoparticles /
- polymer stabilizers /
- stability /
- transport /
- reactivity
-
表 1 未改性(CK)和改性FeS纳米颗粒的沉积速率和最大迁移距离
Table 1. Deposition rates and maximum migration distances of unmodified and modified FeS nanoparticles
处理组 沉积速率/(10−3s−1) 最大迁移距离/cm CK 6.5±0.4 10.0±2.1 CMC-FeS 1.5±0.1 39.7±4.7 ST-FeS 2±0.3 33.3±2.6 GG-FeS 4.6±0.5 21.5±0.7 SA-FeS 1.8±0.3 35.4±6.2 -
[1] HYUN S P, DAVIS J A, SUN K, et al. Uranium(VI) reduction by iron(II) monosulfide mackinawite[J]. Environmental Science & Technology, 2012, 46(6): 3369-3376. [2] GONG Y, TANG J, ZHAO D. Application of iron sulfide particles for groundwater and soil remediation: A review[J]. Water Research, 2016, 89: 309-320. doi: 10.1016/j.watres.2015.11.063 [3] JEONG H Y, HAYES K F. Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite[J]. Environmental Science & Technology, 2003, 37(20): 4650-4655. [4] JEONG H Y, HAYES K F. Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: Reaction rates[J]. Environmental Science & Technology, 2007, 41(18): 6390-6396. [5] LI D, PENG P, YU Z, et al. Reductive transformation of hexabromocyclododecane (HBCD) by FeS[J]. Water Research, 2016, 101: 195-202. doi: 10.1016/j.watres.2016.05.066 [6] MULLET M, BOURSIQUOT S, EHRHARDT J J. Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244(1/2/3): 77-85. [7] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles[J]. Nanotechnology, 2012, 23(29): 294007. doi: 10.1088/0957-4484/23/29/294007 [8] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7): 3986-3994. [9] CHEN Y, LIANG W, LI Y, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review[J]. Chemical Engineering Journal, 2019, 362: 144-159. doi: 10.1016/j.cej.2018.12.175 [10] LYU H, TANG J, HUANG Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal, 2017, 322: 516-524. doi: 10.1016/j.cej.2017.04.058 [11] VAN K F, VAN H L, DU L G. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment[J]. Journal of Environmental Management, 2016, 168: 210-218. [12] WU J, WANG X, ZENG R J. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr(VI) removal as an example[J]. Journal of Hazardous Materials, 2017, 333: 275-284. doi: 10.1016/j.jhazmat.2017.03.023 [13] PAKNIKAR K M, NAGPAL V, PETHKAR A V, et al. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6(3/4): 370-374. [14] SUN Y, LIU Y, LOU Z, et al. Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/ST) stabilized FeS nanoparticles: Stabilization effects and removal mechanism[J]. Chemical Engineering Journal, 2018, 344: 616-624. doi: 10.1016/j.cej.2018.03.126 [15] ZHAO X, LV L, PAN B, et al. Polymer-supported nanocomposites for environmental application: A review[J]. Chemical Engineering Journal, 2011, 170: 381-394. [16] HE F, ZHAO D. Preparation and characterization of a new class of ST-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39: 3314-3320. [17] LIU H, QIAN T, ZHAO D. Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles[J]. Chinese Science Bulletin, 2013, 58: 275-281. doi: 10.1007/s11434-012-5425-3 [18] 洪梅, 杨慧萍, 陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报 (地球科学版), 2019, 49(4): 1121-1128. [19] MATTISON N T, O′CARROLL D M, KERRY R R, et al. Impact of porous media grain size on the transport of multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(22): 9765-9775. [20] LIU J, VALSARAJ K T, DEVAI I, et al. Immobilization of aqueous Hg(II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2/3): 432-440. [21] 刘伟. 瓜尔豆胶稳定纳米铁的制备及其去除水体中六价铬的研究[D]. 天津: 南开大学, 2013. [22] HE F, ZHAO D, LIU J, et al. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J]. Industry & Engineering Chemistry Research, 2006, 46(1): 29-34. [23] MAITY D, AGRAWAL D C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media[J]. Journal of Magnetism and Magnetic Materials, 2007, 308(1): 46-55. doi: 10.1016/j.jmmm.2006.05.001 [24] WU N, FU L, SU M, et al. Interaction of fatty acid monolayers with cobalt nanoparticles[J]. Nano Letters, 2004, 4(2): 383-386. doi: 10.1021/nl035139x [25] KIRWAN L J, FAWELL P D, VAN B W. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength[J]. Langmuir, 2004, 20: 4093-4100. doi: 10.1021/la036248u [26] XIONG Z, HE F, ZHAO D, et al. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles[J]. Water Research, 2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018 [27] JEONG H Y, HAN Y, PARK S W, et al. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization[J]. Geochimicaet Cosmochimica Acta, 2010, 74(11): 3182-3198. doi: 10.1016/j.gca.2010.03.012 [28] HENDERSON A D, DEMOND A H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3): 1267-1276. doi: 10.1016/j.watres.2012.11.044 [29] ALBERTO T, RAJANDREA S. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum[J]. Journal of Nanoparticle Research, 2009, 11: 635-645. doi: 10.1007/s11051-008-9405-0 [30] LECONANET H F, BOTTERO J Y, WIESNER M R. Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environmental Science & Technology, 2004, 38(19): 5164-5169. [31] RAJAGOPALAN R, TIEN C. Comment on correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2005, 39(14): 5494-5495. [32] YAO K, HABIBIAN M, O′MELIA C. Water and waste filtration, concepts and application[J]. Environmental Science & Technology, 1971, 5(11): 1105-1112. [33] 苏燕. 包气带NAPLs 污染的表面活性剂泡沫强化修复实验研究[D]. 长春: 吉林大学, 2015. [34] ZHANG M, YI K, ZHANG X, et al. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity[J]. Journal of Hazardous Materials, 2020, 388, 121822. [35] GASTONE F, TOSCO T, SETHI R. Guar gum solutions for improved delivery of iron particles in porous media: Part 1: Porous medium rheology and guar gum-induced clogging[J]. Journal of Contaminant Hydrology, 2014, 166: 23-33. doi: 10.1016/j.jconhyd.2014.06.013 [36] KERZSCHMAR R, BARMETTLER K, GROLIMUND D. Experimental determination of colloid deposition on rates and collision efficiencies in natural porous[J]. Water Resource Research, 1997, 33(5): 1129-1137. doi: 10.1029/97WR00298 [37] 洪梅, 任璇, 杨慧萍. 稳定型与负载型FeS修复Cr(Ⅵ)污染地下水的可行性研究[J]. 吉林大学学报(地球科学版), 2019, 50(4): 1182-1188.