[1] HYUN S P, DAVIS J A, SUN K, et al. Uranium(VI) reduction by iron(II) monosulfide mackinawite[J]. Environmental Science & Technology, 2012, 46(6): 3369-3376.
[2] GONG Y, TANG J, ZHAO D. Application of iron sulfide particles for groundwater and soil remediation: A review[J]. Water Research, 2016, 89: 309-320. doi: 10.1016/j.watres.2015.11.063
[3] JEONG H Y, HAYES K F. Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite[J]. Environmental Science & Technology, 2003, 37(20): 4650-4655.
[4] JEONG H Y, HAYES K F. Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: Reaction rates[J]. Environmental Science & Technology, 2007, 41(18): 6390-6396.
[5] LI D, PENG P, YU Z, et al. Reductive transformation of hexabromocyclododecane (HBCD) by FeS[J]. Water Research, 2016, 101: 195-202. doi: 10.1016/j.watres.2016.05.066
[6] MULLET M, BOURSIQUOT S, EHRHARDT J J. Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244(1/2/3): 77-85.
[7] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles[J]. Nanotechnology, 2012, 23(29): 294007. doi: 10.1088/0957-4484/23/29/294007
[8] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7): 3986-3994.
[9] CHEN Y, LIANG W, LI Y, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review[J]. Chemical Engineering Journal, 2019, 362: 144-159. doi: 10.1016/j.cej.2018.12.175
[10] LYU H, TANG J, HUANG Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal, 2017, 322: 516-524. doi: 10.1016/j.cej.2017.04.058
[11] VAN K F, VAN H L, DU L G. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment[J]. Journal of Environmental Management, 2016, 168: 210-218.
[12] WU J, WANG X, ZENG R J. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr(VI) removal as an example[J]. Journal of Hazardous Materials, 2017, 333: 275-284. doi: 10.1016/j.jhazmat.2017.03.023
[13] PAKNIKAR K M, NAGPAL V, PETHKAR A V, et al. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers[J]. Science and Technology of Advanced Materials, 2005, 6(3/4): 370-374.
[14] SUN Y, LIU Y, LOU Z, et al. Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/ST) stabilized FeS nanoparticles: Stabilization effects and removal mechanism[J]. Chemical Engineering Journal, 2018, 344: 616-624. doi: 10.1016/j.cej.2018.03.126
[15] ZHAO X, LV L, PAN B, et al. Polymer-supported nanocomposites for environmental application: A review[J]. Chemical Engineering Journal, 2011, 170: 381-394.
[16] HE F, ZHAO D. Preparation and characterization of a new class of ST-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39: 3314-3320.
[17] LIU H, QIAN T, ZHAO D. Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles[J]. Chinese Science Bulletin, 2013, 58: 275-281. doi: 10.1007/s11434-012-5425-3
[18] 洪梅, 杨慧萍, 陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报 (地球科学版), 2019, 49(4): 1121-1128.
[19] MATTISON N T, O′CARROLL D M, KERRY R R, et al. Impact of porous media grain size on the transport of multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(22): 9765-9775.
[20] LIU J, VALSARAJ K T, DEVAI I, et al. Immobilization of aqueous Hg(II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2/3): 432-440.
[21] 刘伟. 瓜尔豆胶稳定纳米铁的制备及其去除水体中六价铬的研究[D]. 天津: 南开大学, 2013.
[22] HE F, ZHAO D, LIU J, et al. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater[J]. Industry & Engineering Chemistry Research, 2006, 46(1): 29-34.
[23] MAITY D, AGRAWAL D C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media[J]. Journal of Magnetism and Magnetic Materials, 2007, 308(1): 46-55. doi: 10.1016/j.jmmm.2006.05.001
[24] WU N, FU L, SU M, et al. Interaction of fatty acid monolayers with cobalt nanoparticles[J]. Nano Letters, 2004, 4(2): 383-386. doi: 10.1021/nl035139x
[25] KIRWAN L J, FAWELL P D, VAN B W. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength[J]. Langmuir, 2004, 20: 4093-4100. doi: 10.1021/la036248u
[26] XIONG Z, HE F, ZHAO D, et al. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles[J]. Water Research, 2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018
[27] JEONG H Y, HAN Y, PARK S W, et al. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization[J]. Geochimicaet Cosmochimica Acta, 2010, 74(11): 3182-3198. doi: 10.1016/j.gca.2010.03.012
[28] HENDERSON A D, DEMOND A H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3): 1267-1276. doi: 10.1016/j.watres.2012.11.044
[29] ALBERTO T, RAJANDREA S. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum[J]. Journal of Nanoparticle Research, 2009, 11: 635-645. doi: 10.1007/s11051-008-9405-0
[30] LECONANET H F, BOTTERO J Y, WIESNER M R. Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environmental Science & Technology, 2004, 38(19): 5164-5169.
[31] RAJAGOPALAN R, TIEN C. Comment on correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2005, 39(14): 5494-5495.
[32] YAO K, HABIBIAN M, O′MELIA C. Water and waste filtration, concepts and application[J]. Environmental Science & Technology, 1971, 5(11): 1105-1112.
[33] 苏燕. 包气带NAPLs 污染的表面活性剂泡沫强化修复实验研究[D]. 长春: 吉林大学, 2015.
[34] ZHANG M, YI K, ZHANG X, et al. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity[J]. Journal of Hazardous Materials, 2020, 388, 121822.
[35] GASTONE F, TOSCO T, SETHI R. Guar gum solutions for improved delivery of iron particles in porous media: Part 1: Porous medium rheology and guar gum-induced clogging[J]. Journal of Contaminant Hydrology, 2014, 166: 23-33. doi: 10.1016/j.jconhyd.2014.06.013
[36] KERZSCHMAR R, BARMETTLER K, GROLIMUND D. Experimental determination of colloid deposition on rates and collision efficiencies in natural porous[J]. Water Resource Research, 1997, 33(5): 1129-1137. doi: 10.1029/97WR00298
[37] 洪梅, 任璇, 杨慧萍. 稳定型与负载型FeS修复Cr(Ⅵ)污染地下水的可行性研究[J]. 吉林大学学报(地球科学版), 2019, 50(4): 1182-1188.