Processing math: 100%

基于生化双膜工艺的油田采出水处理与资源化

潘永强, 于丹丹, 杜春安, 刘雨文, 孙静, 苗长波. 基于生化双膜工艺的油田采出水处理与资源化[J]. 环境工程学报, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
引用本文: 潘永强, 于丹丹, 杜春安, 刘雨文, 孙静, 苗长波. 基于生化双膜工艺的油田采出水处理与资源化[J]. 环境工程学报, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
PAN Yongqiang, YU Dandan, DU Chunan, LIU Yuwen, SUN Jing, MIAO Changbo. Preparation of boiler water by biochemical double membrane process treating oilfield produced water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
Citation: PAN Yongqiang, YU Dandan, DU Chunan, LIU Yuwen, SUN Jing, MIAO Changbo. Preparation of boiler water by biochemical double membrane process treating oilfield produced water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088

基于生化双膜工艺的油田采出水处理与资源化

    作者简介: 潘永强(1976—),男,学士,副研究员。研究方向:油田污水处理工作。E-mail:yqpan2000@163.com
    通讯作者:  ; 
  • 基金项目:
    中石化科技攻关项目(320080)
  • 中图分类号: X523

Preparation of boiler water by biochemical double membrane process treating oilfield produced water

    Corresponding author: PAN Yongqiang, yqpan2000@163.com
  • 摘要: 针对胜利油田油井采出水处理负荷过大但锅炉用水短缺的问题,对油井采出水进行生化双膜工艺处理,处理后的产水用于锅炉给水,浓水用于低渗油田回注。开展了规模为200 m3·d−1的中试实验,重点研究了超滤进水悬浮物与超滤膜污染的关系,考察了反渗透进水压力、进水温度对产水率、膜通量和透盐率的影响。结果表明:生化处理后的油田采出水中的悬浮物含量与膜污染速度无关,跨膜压差ΔP的增加速度为0.000 046 2 MPa·d−1;增大反渗透进水压力会导致产水率增加、膜通量增加、透盐率降低;升高进水温度会导致产水率增加、膜通量增加、透盐率升高;生化处理后的采出水含油量为0.63 mg∙L−1,超滤后悬浮物为0.2 mg∙L−1,反渗透后产水电导率为81~245 μS∙cm−1,可满足锅炉给水SY/T 0097-2016设计规范中对含油量、悬浮物和矿化度等指标的进水要求。
  • 碘代消毒副产物是在水中含碘离子或含碘化合物的条件下,利用次氯酸钠,二氧化氯等消毒剂对饮用水或者污水进行消毒,与水中其他的化合物经过一系列复杂的反应生成的一类含碘的副产物。碘代消毒副产物的种类包括碘代三卤甲烷,碘代卤乙酸,碘代卤乙腈,碘代乙酰胺等[1-3]。碘代消毒副产物虽然在水中含量较低,但是大量的研究表明,其具有比常规的氯代和溴代消毒副产物更高的遗传毒性和细胞毒性[1]。我国的沿海地区和部分内陆地区水源中含有较高含量的碘离子,特别是北京、河南和河北部分浅层水中碘离子的含量高达1 000 µg·L−1,具有较高的碘代消毒副产物生成风险[4-5]。目前,针对碘代消毒副产物的控制研究大多集中在利用传统的混凝、沉淀,臭氧以及膜过滤等手段去除其前驱物,而对于碘代消毒副产物本身的降解研究较少[6]

    高级氧化技术是一种处理难降解有机废水的有效手段。芬顿氧化技术是应用最广泛和成熟的高级氧化技术,在处理印染、医药、石化等行业废水有重要的应用。但是传统的均相芬顿氧化技术还存在着pH适用范围窄、双氧水利用效率低以及存在铁泥二次污染等问题。多相芬顿催化氧化是近年来快速发展的一种改进型高级氧化技术,其目的在于克服均相芬顿技术的弊端。多相芬顿催化氧化主要是将自由的金属离子固相化,形成金属、金属氧化物、金属负载型以及金属离子掺杂型固体催化剂[7-11]。相比于传统的均相催化氧化技术,多相芬顿催化技术具有pH响应范围宽,不产生二次污染以及活性组分易分离的优点。但是,固液界面的存在使得多相芬顿催化氧化反应受到催化剂结构形貌、表面性质等自身特性影响,还受到污染物特性,氧化剂种类和浓度等反应条件的影响,其催化机理在当前尚未形成统一的认识,这极大增加了催化剂结构设计以及活性调控的难度[12-13]。这些催化剂的设计与调控大多依赖于催化剂内金属组分高价态与低价态之间的转换。因此,还存在着氧化剂利用率低,中性条件下催化效果不理想以及催化剂稳定性差等不足[14]

    双反应中心(dual-reactor centers,DRCs)催化剂是指通过在催化剂表面进行电子调控,构建具有贫富电子微区的双反应中心(DRCs),使得富电子中心可以为O2,H2O2等氧化剂提供电子,发生还原反应,生成活性氧物种 (包括·OH,O2·−等)。而缺电子中心则可以快速捕获体系中的污染物等作为电子供体,实现污染物多途径降解,并且两个中心之间通过化学键桥实现电子高效转移[15]。利用双反应中心原理构建的催化剂实现了突破了传统芬顿反应利用金属离子高低价态转换来实现H2O2的氧化还原,有效突破了反应的速率限制步骤,提高了H2O2的利用率,也大大提高了催化剂的稳定性[16]。有研究表明,利用阳离子-用键是构建高效双反应中心催化剂关键。比如,通过在CuAlO2催化剂表面嫁接CN(C3N4)有机配体,形成了C-O-Cu键桥,CN的引入一方面减少了CuAlO2的氧空穴的数量,另一方面大大的加速了电子在以C和Cu为贫富中心之间的传递,从而使得催化剂对双酚A的降解效率提高了25倍以上。但嫁接有机配体的方式存在有机配体脱落的风险,如何优化催化剂的合成方法,快速制备高效的双反应中心催化剂具有重要的意义。

    之前的研究发现,氧空位的存在可以在一定程度上影响芬顿反应的发生,其对电子的转移以及污染物的捕获都有重要的意义。ZHAN等人将氧化钴掺杂到氧化锌(ZnO)纤锌矿晶格中,成功地在催化剂表面构建了富含未配对电子的氧空位富电子中心和Co(III)贫电子中心,催化效率提高了17倍以上。也有研究表明,铜系类芬顿催化剂在催化芬顿反应时,比铁系类芬顿催化剂具有更高的反应速率和更宽的pH适用范围。这是因为Cu (II) 被过氧化氢催化还原的速率(1.0×104 mol·s−1)要远高于Fe(III)(74 mol·s−1)。但是大部分的铜基的催化剂在污染物或者酸的作用下(0.5~10 mg·L−1),容易发生泄露,高于美国饮用水标准1.3 mg·L−1,从而造成一定的环境影响。因此,如何在保持铜元素高效催化效率的同时,提高铜元素的稳定性对于催化剂的设计和开发就显得尤为重要。

    基于此,本文通过水热合成的方法在ZnO纤锌矿晶格中嵌入氧化铜(CuO),从而得到一种全新的双中心反应催化剂。通过XPS,EPR,FTIR等手段对催化剂的表面性质进行表征。并利用水中典型的碘代消毒副产物碘乙腈进行降解研究,重点研究了碘乙腈降解效果,影响因素以及矿化效果,同时根据EPR,XPS的分析结果推测了碘乙腈的降解机制。

    双氧水(国药集团化学试剂陕西有限公司,H2O2,30%)、氢氧化钠(AR,96%)、碳酸氢钠、磷酸氢二钠合二水(Na2HPO4·2H2O,AR,99.0%~100.5%)、磷酸二氢钾(KH2PO4,GR,99.5%~100.5%)、对苯醌(麦克林,AR,97%)、叔丁醇 (CP,98%) 、无水硫酸钠(AR,99%)、甲基叔丁基醚(沃凯,MTBE)、2.5水合硝酸铜(98.0%~102.0%,Cu(NO3)2·2.5H2O,Alfa Aesar)、六水合硝酸锌(Zn(NO3)2·6H2O,98%,Alfa Aesar)、超纯水、氨水(AR,25%~28%)、碘乙腈(麦克林,98%,IAN),分子式C2H2IN。所有化学试剂至少是分析纯,实验用水为超纯水。

    按照设定的比例称取一定量的六水合硝酸锌和三水合硝酸铜溶于200 mL超纯水中,搅拌30 min,向其中加入氢氧化钠溶液,用氨水调节pH至碱性,150 ℃下反应8 h。反应完成后,将产物过滤并清洗3遍,随后将所得固体烘干后置于马弗炉中550 ℃条件下煅烧,制得Cu-ZnO催化剂。

    采用透射电子显微镜(TEM,日本JEOL 公司JEM-2 100 型)观察催化剂的微观结构特征及构造;采用X-射线粉末衍射仪(XRD,Philips PW3 040 /60 型)来观察催化剂的晶型和物相;采用X 射线光电子能谱(XPS,Thermo Scientific K-Alpha+)对金属元素价态和表面元素组成和含量信息进行收集,X射线源:单色化AlKa源(Mono AlKa)能量:1 486.6 eV,电压:15 kV,束流:15 mA,分析器扫描模式:CAE。采用傅立叶变换红外光谱仪(BRUKER VERTEX70型)来分析制备的催化剂表面官能团。通过电子顺磁共振波谱仪(德国布鲁克公司ESP300E型)测试固体催化剂的EPR信号。

    取一定量的催化剂加入到预先配好的碘乙腈溶液中,充分搅拌后,立即加入过氧化氢溶液,反应时间为240 min。分别在0、10、30、60、120、240 min取样,并过0.22 μm水系滤膜过滤。碘乙腈溶液初始浓度为Co,反应后浓度为Ce,用Ce/Co表示碘乙腈的降解程度。过滤后的样品加入3 g无水硫酸钠,拧紧瓶盖后振荡,直至无水硫酸钠基本溶解,继而用移液管加入2 mL MTBE,拧紧瓶盖后,振荡1 min、静止5 min后,吸取上层有机液,装入2 mL的进样瓶,使用气相色谱-质谱联用仪GC-MS(岛津,GC2 010-TQ8040)分析。

    IAN的浓度通过GC-MS分析测定。色谱柱为SH-Rxi-5Sil MS(L:30 m,ID:0.25 mm,DF:0.25 μm);GC参数:柱箱及进样口温度分别是40 ℃和260 ℃,不分流进样,进样量1 µL,载气为氦气;升温程序为:40 ℃保持3 min,随后以20 ℃·min−1的升温速率升至100 ℃,最后以40 ℃·min−1的升温速率升至240 ℃保持3 min,总程序时间为12.50 min,离子源及接口温度分别是220 ℃和260 ℃;采用外标法进行定量分析,得到标准曲线相关系数大于0.99;在此方法下:IAN的保留时间为5.860 min,目标离子m/z为167,参考离子m/z分别为40和127。I、IO3采用离子色谱1100分析;色谱柱型号IC(AS-16,150 mm×4 mm)。TOC测试采用过总有机碳分析仪测定。Zn和Cu离子采用离子色谱质谱联用仪(ICP-MS)测定。

    Cu-ZnO的透射电镜图和元素能谱图如图1所示。由图1(a)~(b)可以看出,Cu-ZnO催化剂为纳米棒状结构。由图1(c)~(d)中可以看到明显的晶格条纹,说明该催化剂具备铜掺杂的氧化锌晶型。由图1(e)~(h)可以发现,催化剂主要元素为锌、铜和氧元素,并且铜元素均匀的分布在氧化锌纳米棒上。这说明铜和锌形成了较好的键联。由于锌的电负性为1.65 eV,铜的电负性为1.9 eV。因此,在催化剂的表面可能形成铜富电子中心和锌贫电子中心[17]。两者通过氧原子进行连接,并传递电子,捕获周围的污染物或者氧化剂发生氧化还原反应。

    图 1  Cu-ZnO的高分辨透射电子显微图和元素能谱图
    Figure 1.  TEM images and element mapping of Cu-ZnO

    图2为催化剂的FT-IR、XRD以及EPR图谱。由图2(a)可以看出,ZnO和Cu-ZnO表面均存在羟基官能团。对于ZnO来说,3 485 cm−1和1 427 cm−1分别归属于催化剂表面羟基的伸缩振动峰和面内振动峰。而Cu-ZnO的特征峰有明显的红移,羟基的伸缩振动峰和面内振动峰分别出现在3 525 cm−1和1 431 cm−1。这说明在Cu-ZnO中,由于铜元素的加入,影响了氧化锌表面的电荷分布,从而影响了催化剂表面附着羟基的振动[18]。XRD图谱(图2(b))中2θ为31.73º、36.20º、56.52º分别对应ZnO的(100)、(101)以及(110)晶面。2θ为35.47º、38.74º、48.82º分别对应CuO的(002)、(111)以及(202)晶面。这说明合成的催化剂基本保留了氧化锌六方纤锌矿的晶型结构。由于铜离子和锌离子的原子半径接近,因此,铜离子可以很好地掺杂到氧化锌的晶型结构中[19]。如图2(c)所示,在引入Cu之后,EPR的自由电子信号显著增强,说明催化剂表面电子发生重排,出现极化性的电子高低密度区,有利于后续反应中与环境介质交换电子,发生氧化还原反应[20]

    图 2  Cu-ZnO的FTIR、XRD及EPR图谱
    Figure 2.  FTIR,XRD and EPR pattern of the Cu-ZnO

    Cu-ZnO催化剂表面Cu和Zn的XPS表征结果如图3(a)所示。可见,1021.48 eV对应的是Zn的2p3/2光电子峰,相比于纯的ZnO对比,Zn的电子结合能增加了0.11 eV。这是因为铜原子的电负性要比锌原子大,铜加入后Zn有给电子的倾向,从而使得锌对于剩余电子束缚能力增强,结合能增大。如图3(b)所示,Cu-ZnO催化剂中铜元素的光电子能谱在942~945 eV和962 eV附近有2个较强的卫星峰,说明Cu主要以Cu(II)形态存在[21]。使用Avantage软件对Cu2p2/3图谱进行分峰处理(图3(c))。结果表明,可能存在2种形态,932.61 eV对应的是Cu0或者Cu+,933.91 eV对应的是Cu2+。通过对Cu LMM俄歇电子能谱的分析得知(图3(d)),Cu的峰值在918.70 eV左右,归属于Cu0[22]

    图 3  Cu-ZnO的XPS 能谱图
    Figure 3.  XPS spectra of Cu-ZnO

    为了研究不同Cu/Zn配比条件下催化剂的降解效果,本研究合成了Zn/Cu原子比例为4∶1、2∶1、1∶1、1∶2、1∶4的5种催化剂,结果如图4(a)所示。所有的催化剂都表现出了对碘乙腈良好的降解效果,当Cu/Zn为1∶1的时候,降解效果最佳。图4(b)反映了在单独双氧水(10mmol·L−1),单独Cu-ZnO催化剂(1 g·L−1)以及催化剂+双氧水(1 g·L−1+10 mmol·L−1)3个条件下碘乙腈的降解效果。单独双氧水和单独催化剂对碘乙腈的降解效果有限,去除率小于20%。在催化剂投加量为1 g·L−1,H2O2投加量为10 mmol·L−1时,碘乙腈的去除率为84%。这说明合成的Cu-ZnO催化剂可能诱导H2O2产生·OH、O2·−等活性物质,从而降解水中的污染物。

    图 4  不同催化剂催化性能对比以及不同条件下碘乙腈的降解效果
    Figure 4.  Comparison of the catalytic performance of different catalysts and IAN degradation under different conditions

    为了优化合成的Cu-ZnO催化剂降解碘乙腈的反应条件,研究了不同H2O2投加量,催化剂投加量,pH对碘乙腈降解效果得影响,同时研究了环境中的腐殖酸和共存离子的影响,实验结果如图5(a)~(e)所示。可以看出,随着双氧水投加量的增加,碘乙腈的降解速率有明显的提升,但是当双氧水的浓度增加到6 mmol·L−1以上时,碘乙腈的去除率达到82%,并且不再上升。同时,当催化剂的浓度为10 mmol·L−1时,再次提高双氧水的浓度对碘乙腈的降解率和速率不再提升(图5(a))。图5(b)反映了催化剂投加量对碘乙腈去除效果的影响。可见,随着催化剂的投加量的增加,碘乙腈的去除率和降解速率也有所增加。当催化剂的投加量达到1 g·L−1时,碘乙腈去除率和降解速率增加不再明显。因此,本次研究确定双氧水和催化剂的最佳投加量分别为10 mmol·L−1和1 g·L−1图5(c)反映了不同pH条件下,催化剂对碘乙腈的降解效果,与大部分常规多相芬顿催化剂反应不同的是,在本次研究中当溶液的pH为酸性时(pH=3和5),碘乙腈的去除率较pH为中性或者碱性的时候低。一般地认为,在pH为酸性时,更有利于H2O2的还原和·OH的生成,从而更有利于污染物的降解[23]。而本次合成的Cu-ZnO双反应中心催化剂利用铜和锌之间电负性的差异,在催化剂内部构建了多个具有正负极的微型原电池,从而实现了电子的快速转移。相比于传统的均相芬顿或者多相芬顿技术,基于双反应中心催化理论设计的类芬顿催化剂本身对pH的依赖性较小。另一方面,对于污染物碘乙腈来说,在酸性条件下具有较好的稳定性。当溶液pH上升,碘乙腈也更容易水解,在一定程度上促进了碘乙腈的降解[24]

    图 5  不同因素对Cu-ZnO催化氧化碘乙腈的影响
    Figure 5.  Effects of different factors on the catalytic activity of IAN

    图5(d)和图5(e)反映了腐殖酸(HA)、磷酸根(PO43-)以及碳酸氢根(HCO3)对碘乙腈去除率的影响。由图5(d)可知,当HA的浓度小于5 mmol·L−1时,碘乙腈的去除率不受影响。当HA的浓度高于10 mmol·L−1时,碘乙腈的去除率降低。这可能是由于腐殖酸会吸附在催化剂的表面,从而减少了污染物和催化剂表面的接触。从图5(e)可以看出,磷酸根离子对碘乙腈的降解有抑制作用,而碳酸氢根对于碘乙腈的降解有促进的作用。当反应体系中磷酸根的浓度分别为5 mmol·L−1和10 mmol·L−1时,碘乙腈的去除率下降了分别为6.19%和18.11%。而当溶液中有碳酸氢根存在时,碘乙腈的降解速率大大加快了,10 min内碘乙腈的去除率达到了80%。有研究表明,HCO3由于对·OH有淬灭作用,因此,对大多数的多相芬顿催化剂有抑制作用。但在本次研究中,碳酸氢根对碘乙腈的降解基本没有抑制作用,反而有促进作用。这可能是由于碳酸氢根可以吸附到催化剂的表面,从而为电子的转移起到架桥的作用,从而加快了电子的转移速率,具体的理论解释需要进一步的实验研究证明。

    图5(f)反映了在不同pH条件下催化剂的Zn2+和Cu2+的释放情况。结果表明,在pH为酸性的时候,催化剂会释放出少量的Zn2+和Cu2+,其质量浓度小于0.2 mg·L−1,小于《城镇污水处理厂污染物排放标准》(GB 18918-2002)》的规定值(Zn≤1.0 mg·L−1,Cu≤0.5 mg·L−1)。当pH为中性时,几乎观察不到溶液当中的Zn和Cu。这表明催化剂具有良好的化学稳定性和较为广阔的应用前景。

    为深入探究自由基的产生类型以及对碘乙腈降解效果的影响,本次研究采用了叔丁醇(TBA)和对苯醌(p-BQ)2种淬灭剂分别对体系中可能产生的·OH和O2·进行淬灭,结果如图6所示。2种淬灭剂对碘乙腈的降解有明显的抑制作用,尤其是叔丁醇。当叔丁醇的投加量为5 mmol·L−1时,碘乙腈的去除率降低了64%,再次提高叔丁醇的投加量,对碘乙腈降解的抑制作用不再增强。而p-BQ的投加量为5 mmol·L−1和10 mmol·L−1时,碘乙腈的去除率由91%下降到33%和22%。这说明·OH和O2·都对碘乙腈的降解有重要的作用,并且·OH的影响更大。

    图 6  淬灭剂对Cu-ZuO/H2O2体系处理碘乙腈效果的影响
    Figure 6.  Effect of scavengers on IAN removal by Cu-ZnO /H2O2 system

    为进一步探究自由基的产生机理,采用ESR技术考察了在不同条件下HO2/O2·−的生成情况,结果如图7(a)和图7(b)所示。可以发现,在只有催化剂的存在的情况下,在体系中可以捕捉到HO2/O2·−的信号,但没有检测到·OH。这是因为催化剂本身富电子区就能活化氧气产生HO2/O2·−。在加入污染物后,可以看到·OH的信号明显增强。这说明污染物加入后,可以作为催化剂表明双中心反应的电子供体,提高了催化剂内部的电子传递速率,从而促进·OH的产生[24]。产生的·OH可以进一步对碘乙腈进行氧化,提高体系的催化效率[16]

    图 7  不同体系下捕获DMPO-•OH和DMPO- HO2·/O2·−的ESR波谱
    Figure 7.  ESR spectra of DMPO-HO2·/O2·-and DMPO-•OH in different systems

    图8反映了催化反应过程中I和IO3的生成量变化趋势。由图8(a)可知,随着IAN的降解,反应体系中I和IO3的质量浓度逐步上升。有研究表明,当水中的碘化物降解时,会释放出I或者含碘的降解产物。当体系中有氧化剂存在时,碘离子可以被氧化生成氢碘酸 (HOI)。氧化生成的HOI在水中不稳定,会继续发生以下2种路径:一方面会继续发生歧化反应生成碘离子和碘酸根,生成的碘酸根离子是无毒的,且化学性质稳定,对环境的影响较小,被认为是水中碘元素演变的理想归宿;另一方面,当水中有天然有机物(NOM)存在时,HOI可以继续生成含碘的副产物,这也是水中含碘消毒副产物的主要来源[25]。在本研究中发现,虽然随着IAN的降解I和IO3的质量浓度都在上升,但生成的I和IO3的数量要小于IAN的降解量。这说明虽然在碘乙腈降解的过程中,碘乙腈并没有完全矿化,还生成了其他含碘的降解产物。为了更深入研究IAN矿化程度,本研究检测了在降解过程中TOC的变化规律,实验结果如图8(b)所示。理论计算的TOC浓度(TOC理论)根据反应后体系中剩余的IAN的浓度理论计算而来,计算公式如式(1)所示。TOC实测为体系中实测的TOC浓度。结果表明,随着IAN的不断降解,反应后体系中TOC的浓度也在逐渐降低,这说明有部分的IAN已经被完全矿化。同时,本研究也观察到实测的TOC浓度要大于体系中IAN所产生的TOC浓度。这说明,被降解的IAN并没有全部矿化生成二氧化碳和水,仍然存在部分有机中间产物。这部分中间产物可能包括碘乙酰胺,碘乙酸以及含碘甲烷等[26]

    图 8  碘乙腈降解过程中TOC、碘离子以及碘酸根离子的变化
    Figure 8.  variation of the TOC,I- and IO- 3 in the degradation of IAN
    C=2CeM1M2 (1)

    式中:C理论为理论计算的TOC的浓度,mg·L−1Ce为反应后碘乙腈的浓度,mg·L−1M1为碳元素的摩尔质量,g·mol−1M2为碘乙腈的摩尔质量,g·mol−1

    综上所述,推断了采用Cu-ZnO降解碘乙腈的双中心反应机制(图9)。首先,由于在催化剂内部锌和铜的电负性差异,形成了以铜富电子中心和以锌贫电子中心,2个中心通过氧原子键联,电子经Cu-O-Zn键桥传递。在H2O2存在的条件下,H2O2分子在富电子中心得电子还原产生·OH,从而氧化降解水中的碘乙腈。同时,碘乙腈可以作为电子供体围绕在贫电子锌中心周围,一方面,可以为催化反应提供电子从而自身发生氧化降解;另一方面,也在一定程度上阻隔H2O2的无效分解。多数碘乙腈在·OH的作用下矿化成CO2和H2O,碘离子最终降解成I和IO3;部分未能被矿化的碘乙腈可能生成碘乙酸、碘乙酰胺以及碘仿等副产物。

    图 9  Cu-ZnO催化氧化降解碘乙腈的示意图
    Figure 9.  Schematic representation of the degradation of IAN catalyzed by the Cu-ZnO

    1)通过水热合成的Cu-ZnO双反应中心纳米催化剂成功的将Cu掺杂到ZnO的晶格中,其具有良好的催化活性,能够有效地去除水中的碘乙腈。

    2)当Cu-ZnO投加量为1 g·L−1,双氧水投加量为10 mmol·L−1时,Cu-ZnO对碘乙腈的去除率可达91%以上。

    3) pH和低浓度的HA对催化降解效果影响较小,高浓度的HA和磷酸氢根有抑制作用,碳酸根浓度大于0.3 mmol·L−1时对碘乙腈的去除速率和去除率均有促进作用。

    4)·OH和HO2/O2·−是降解碘乙腈主要的活性物种,降解产物包括I、IO3、CO2、水等产物。

  • 图 1  工艺流程

    Figure 1.  Technological process

    图 2  油含量跟踪检测

    Figure 2.  Tracking detection of oil content

    图 3  乳化原油显微镜照片(×400)

    Figure 3.  Micrograph of emulsified crude oil(×400)

    图 4  跨膜压差变化

    Figure 4.  Changes of transmembrane pressure drop

    图 5  进水压力与产水率、膜通量的关系(30 ℃)

    Figure 5.  Relationship between influent pressure, water yield and membrane flux (30 ℃)

    图 6  进水压力与透盐率关系(30 ℃)

    Figure 6.  Relationship between influent pressure and salt permeability (30 ℃)

    图 7  进水温度与产水率、膜通量的关系(2.0 MPa)

    Figure 7.  Relationship between influent temperature and water yield, membrane flux (2.0 MPa)

    图 8  进水温度与产水率、膜通量的关系(2.0 MPa)

    Figure 8.  Relationship between influent temperature and salt permeability (2.0 MPa)

    表 1  不同调节方式提高进水压力对比

    Table 1.  Comparison of the increase of inlet water pressure responding to different regulation methods

    调节方式进水压力浓水压力进水量浓水量产水量产水率膜通量透盐率
    A增大增大减小减小增大增大增大减小
    B增大增大增大增大增大增大增大减小
    调节方式进水压力浓水压力进水量浓水量产水量产水率膜通量透盐率
    A增大增大减小减小增大增大增大减小
    B增大增大增大增大增大增大增大减小
    下载: 导出CSV

    表 2  不同调节方式对膜表面水流速度影响

    Table 2.  Effect of different regulating methods on the flow velocity of membrane surface

    调节方式VVV/V
    A增大减小增大
    B增大增大增大
    调节方式VVV/V
    A增大减小增大
    B增大增大增大
    下载: 导出CSV

    表 3  工艺节点水质变化

    Table 3.  Changes in the water quality of the process nodes

    工艺节点含油量/(mg∙L−1)悬浮物/(mg∙L−1)矿化度/(mg∙L−1)硬度/(mg∙L−1)pH
    来水1275018 1001 4407.55
    生化0.6319.927.32
    超滤0.20.27.31
    RO00810.366.86
    锅炉给水≤2≤2≤7 000≤0.17.5~11
      注:—代表未检测。
    工艺节点含油量/(mg∙L−1)悬浮物/(mg∙L−1)矿化度/(mg∙L−1)硬度/(mg∙L−1)pH
    来水1275018 1001 4407.55
    生化0.6319.927.32
    超滤0.20.27.31
    RO00810.366.86
    锅炉给水≤2≤2≤7 000≤0.17.5~11
      注:—代表未检测。
    下载: 导出CSV
  • [1] 杜春安, 马力, 吴晓玲, 等. 胜利油田污水资源化利用技术研究进展[J]. 石油与天然气化工, 2012, 41(4): 432-434. doi: 10.3969/j.issn.1007-3426.2012.04.020
    [2] 郑路, 李学凤, 占程程, 等. 采油污水资源化利用技术研究[J]. 石油天然气学报, 2012, 34(9): 346-347.
    [3] JOU C G, HUANG G C. A pilot study for oil refinery wastewater treatment using a fixed-film bioreactor[J]. Advances in Environmental Research, 2003, 7: 463-469. doi: 10.1016/S1093-0191(02)00016-3
    [4] 刘立, 张继军, 刘燕, 等. 机械蒸汽再压缩技术在蒸发领域的应用[J]. 化学工程, 2014, 42(7): 1-5. doi: 10.3969/j.issn.1005-9954.2014.07.001
    [5] 袁鹏, 雷江辉, 马尧, 等. 新疆油田超稠油采出水处理技术优化研究[J]. 化学工程, 2018, 37(8): 33-36. doi: 10.3969/j.issn.1005-9954.2018.08.007
    [6] 李长波, 赵国峥, 邱峰, 等. 超滤-反渗透双膜技术深度处理乙烯生产废水[J]. 环境工程, 2014, 33(7): 24-28.
    [7] 万斌, 叶永东, 王钦平. 油田采出水回注处理的现状与发展[J]. 广东化工, 2012, 39(9): 50-53. doi: 10.3969/j.issn.1007-1865.2012.09.028
    [8] 窦茂卫, 苏保卫, 高学理, 等. 油田采出水膜法处理技术应用研究进展[J]. 环境科学与技术, 2011, 34(8): 124-130. doi: 10.3969/j.issn.1003-6504.2011.08.028
    [9] 潘永强, 于丹丹, 谭晓明, 等. MBBR-超滤工艺在低渗透油田回注水中的应用[J]. 石油与天然气化工, 2019, 48(4): 111-116. doi: 10.3969/j.issn.1007-3426.2019.04.020
    [10] WIJMANS J G, BAKER R W. The solution-diffusion model: A review[J]. Journal of Membrane Science, 1995, 107(1): 1-21.
    [11] 靖大卫. 反渗透系统优化设计与运行[M]. 北京: 化学工业出版社, 2018.
    [12] 王建泰, 李天增, 苏宏, 等. 反渗透处理尾矿废水脱盐率的影响因素研究[J]. 工业水处理, 2009, 29(2): 32-34. doi: 10.3969/j.issn.1005-829X.2009.02.009
    [13] 陈伟山, 李建军, 杨彦虎, 等. 反渗透工艺处理工业废水的影响因素研究[J]. 铀矿冶, 2018, 37(1): 42-46.
    [14] 赵雯, 汪勉, 罗超, 等. 反渗透膜处理高含盐废水影响因素实验研究[J]. 水处理技术, 2018, 44(8): 81-85.
    [15] 徐腊梅, 夏罡, 毕飞, 等. 反渗透系统中浓差极化的影响[J]. 工业水处理, 2004, 24(1): 63-65. doi: 10.3969/j.issn.1005-829X.2004.01.021
    [16] 徐绍东, 安占强, 张志岭. 反渗透制取纯水技术[J]. 中国氯碱, 2008, 28(2): 30-32. doi: 10.3969/j.issn.1009-1785.2008.02.009
    [17] 陈华, 赵世伟, 夏鑫, 等. 影响反渗透制备脱离子水的运行因素[J]. 中国氯碱, 2012, 32(11): 45-47. doi: 10.3969/j.issn.1009-1785.2012.11.024
    [18] 靖大为, 贾丽媛. 反渗透系统膜通量均衡工艺[J]. 水处理技术, 2005, 31(1): 11-15. doi: 10.3969/j.issn.1000-3770.2005.01.003
  • 加载中
图( 8) 表( 3)
计量
  • 文章访问数:  6044
  • HTML全文浏览数:  6044
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-15
  • 录用日期:  2020-09-21
  • 刊出日期:  2021-02-10
潘永强, 于丹丹, 杜春安, 刘雨文, 孙静, 苗长波. 基于生化双膜工艺的油田采出水处理与资源化[J]. 环境工程学报, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
引用本文: 潘永强, 于丹丹, 杜春安, 刘雨文, 孙静, 苗长波. 基于生化双膜工艺的油田采出水处理与资源化[J]. 环境工程学报, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
PAN Yongqiang, YU Dandan, DU Chunan, LIU Yuwen, SUN Jing, MIAO Changbo. Preparation of boiler water by biochemical double membrane process treating oilfield produced water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088
Citation: PAN Yongqiang, YU Dandan, DU Chunan, LIU Yuwen, SUN Jing, MIAO Changbo. Preparation of boiler water by biochemical double membrane process treating oilfield produced water[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 530-536. doi: 10.12030/j.cjee.202005088

基于生化双膜工艺的油田采出水处理与资源化

    通讯作者:  ; 
    作者简介: 潘永强(1976—),男,学士,副研究员。研究方向:油田污水处理工作。E-mail:yqpan2000@163.com
  • 1. 中国石化胜利油田分公司石油工程技术研究院,东营 257000
  • 2. 中国石油大学(北京)克拉玛依校区,克拉玛依 834000
  • 3. 中国石化胜利油田分公司滨南采油厂,滨州 256600
基金项目:
中石化科技攻关项目(320080)

摘要: 针对胜利油田油井采出水处理负荷过大但锅炉用水短缺的问题,对油井采出水进行生化双膜工艺处理,处理后的产水用于锅炉给水,浓水用于低渗油田回注。开展了规模为200 m3·d−1的中试实验,重点研究了超滤进水悬浮物与超滤膜污染的关系,考察了反渗透进水压力、进水温度对产水率、膜通量和透盐率的影响。结果表明:生化处理后的油田采出水中的悬浮物含量与膜污染速度无关,跨膜压差ΔP的增加速度为0.000 046 2 MPa·d−1;增大反渗透进水压力会导致产水率增加、膜通量增加、透盐率降低;升高进水温度会导致产水率增加、膜通量增加、透盐率升高;生化处理后的采出水含油量为0.63 mg∙L−1,超滤后悬浮物为0.2 mg∙L−1,反渗透后产水电导率为81~245 μS∙cm−1,可满足锅炉给水SY/T 0097-2016设计规范中对含油量、悬浮物和矿化度等指标的进水要求。

English Abstract

  • 我国大部分油田已进入高含水开采期。油田在生产开发过程中产生大量的采出水,而热采工艺需要消耗大量的蒸汽,蒸汽的水源主要是自来水,导致采出水处理量和回注量逐年增加[1],同时也消耗了大量的淡水资源。为了解决这一难题,近年来对采出水资源化进行了较多的研究[2]

    资源化利用的关键是解决采出水中含油量、悬浮物、矿化度、硬度过高的问题[3]。目前,较为成熟的技术是MVR[4-5]和反渗透工艺。MVR工艺的优点是产水率高,适用于高矿化度水质,但由于其成本较高、核心技术不易掌握,限制了推广范围,而反渗透工艺在一定程度上克服了这些缺点。反渗透膜不仅能有效去除有机物、降低COD,而且具有优异的脱盐效果[6]。采出水进行反渗透处理前通常需要利用超滤工艺进行预处理,超滤的主要作用是为了去除水中的悬浮物和细菌,以达到保护反渗透膜的目的。超滤工艺之前也需要进行预处理,主要是为了减轻采出水中原油对超滤膜的污染问题,以延长超滤膜的使用寿命。常用的超滤预处理工艺有混凝沉降、多介质过滤、生化,其中生化工艺对原油的去除较为彻底,能耗较低,是一种较为理想的超滤预处理工艺。油田采出水利用生化双膜工艺制备锅炉用水技术尚未大规模推广,笔者[7-8]通过近2年的生化超滤工艺和7个月的生化双膜工艺研究发现,油田采出水利用生化双膜工艺制备锅炉用水,实现采出水的资源化利用是非常有前景的,既具有经济效益,又具有社会效益。

    在之前的研究[9]中已对预处理及生化工艺进行了详细介绍。本研究重点研究了超滤进水悬浮物与超滤膜污染之间的关系,分别考察了反渗透进水压力、进水温度对产水率、膜通量和透盐率的影响。

  • 对采出水的水质进行了多次检测,水质较为稳定:pH=7.55、温度为48 ℃、SS为50 mg∙L−1、含油量为127 mg∙L−1、COD为376 mg∙L−1、BOD为125 mg∙L−1HCO3为614 mg∙L−1、总硬度为1 400 mg∙L−1、TDS为18 100 mg∙L−1、电导率为30 348 μs∙cm−1。以上结果表明,采出水具有高含油、高矿化度、高COD的特点,将采出水用于锅炉给水必须进行脱盐,脱盐采用的工艺为反渗透,反渗透对进水水质有一定的要求,因此,需要对采出水进行降温、除油、降COD、降悬浮物等预处理。

  • 整套流程包括预处理、生化、超滤、反渗透4个部分,超滤前部分自2018年6月开始运行,2019年10月接入反渗透流程,整套工艺流程如图1所示。

    1)预处理包括气浮和降温2个单元。来水首先进行气浮工艺,处理能力为10 m3∙h−1,可去除大部分含油和悬浮物,降低生化部分负荷。风式冷却塔将来水的温度由48 ℃降低到35 ℃以下,为微生物提供合适的生长温度。生化采用的是MBBR工艺,生化池的有效体积为100 m3。加入填料40 m3,材质为HDPE,直径为25 mm,高为10 mm。活性污泥为2 000 mg∙L−1,功能菌种的发酵液为6 m3,初期加入碳源、氮源,7 d后生化运行正常,不再加入碳氮等营养物质。生化曝气采用的是罗茨风机,风量为4 m3∙min−1,沉降采用拉美兰沉降池,停留时间为2 h。连续检测生化后采出水的含油量,并与来水和气浮后对比。

    2)超滤采用PVDF管式中空纤维膜,过滤精度为30 nm,过滤方式采用的是死端过滤,超滤综合产水率大于97%。在线检测超滤进水压力、浓水压力、产水压力,并计算跨膜压差。每2 d人工检测1次超滤进水悬浮物,记录同一时间的跨膜压差,分析悬浮物对膜污染的影响。不定期检测超滤产水含油量、悬浮物和pH。

    跨膜压差根据式(1)进行计算。

    式中:ΔP为跨膜压差,MPa;P1为进水压力,MPa;P2为浓水压力,MPa;P3为产水压力,MPa。

    3)反渗透采用的是陶氏提供的专用反渗透膜。进水泵为固定频率,最高可提供2.3 MPa的进水压力,通过控制浓水阀门调节进水压力。通过调节风式冷却塔和系统进水量调节整个系统水温。在线检测系统的进水压力、进水量、产水量、浓水量、温度、电导率,并计算产水率和膜通量。分析进水压力、进水温度与产水率、膜通量、透盐率的关系。不定期检测反渗透产水的含油量、悬浮物、矿化度、硬度和pH。

    反渗透过程中膜通量根据式(2)进行计算。产水率根据式(3)进行计算。

    式中:Jw为膜通量,L·(m2·h)−1A 为纯水渗透系数;ΔP为膜两侧压力差,MPa;ΔPs为膜两侧渗透压差,MPa。

    式中:K为产水率;Jw为膜通量,L·(m2·h)−1S为膜面积,m2Q为进水量,m3·h−1

  • 采出水经过气浮和生化后的含油量指标变化如图2所示。来水平均含油量为127 mg∙L−1;气浮出水平均含油量为5.14 mg∙L−1;生化出水平均含油量为0.63 mg∙L−1

    气浮可以去除大部分原油,去除率为96.0%,剩余的4%原油为乳化油和溶解油,均匀分布在采出水中,原油直径小于10 µm,如图3所示。这部分原油利用絮凝和其他常规的方法难以去除,而功能性菌种具有较高的浓度和较大的比表面积,可以比较彻底地降解这部分剩余原油,降解率为3.6%。

  • 每2 d取一组跨膜压差,跨膜压差的变化如图4所示。实验总共选取了174组数据,由于来水水源某些参数的变化,导致生化后采出水的悬浮物含量增加。前102组数据为来水水源变化前数据,进水悬浮物平均为13.16 mg∙L−1,ΔP的增加速度为0.000 046 2 MPa·d−1,即每年增加0.016 9 MPa,后72组数据为来水水源变化后数据,悬浮物平均为29.38 mg∙L−1,ΔP的增加速度为0.000 045 9 MPa·d−1,即每年增加0.016 8 MPa。对于生化处理后的油田采出水,超滤进水中悬浮物的数量与ΔP的增加速度无关。即在一定范围内,超滤膜的污染速度与进水悬浮物的数量无关。

    跨膜压差为超滤膜运行的重要指标之一,其增大速度主要表征超滤膜污染的程度,一般跨膜压差达到0.06 MPa需要对超滤膜进行化学清洗,那么第1次化学清洗,需要的时间为(0.06-0.018 2)/0.016 8 = 2.5 a。由此可见,经过生化处理后的采出水悬浮物虽然较高,但是对超滤膜污染程度较小。

    在运行过程中,跨膜压差A、B、C、D、E、F等6个点较前一数据降低了0.001 MPa,原因是由于这6个点对应的悬浮物较前一数据均有较大幅度的波动。由此可见,进水悬浮物数值短时间较大波动会引起跨膜压差暂时增高或降低,当悬浮物数值正常后,跨膜压差可以恢复到前期水平。

  • 1)通过调节浓水阀调节进水压力,产水率及膜通量的变化如图5所示,透盐率的变化如图6所示。产水率随着进水压力的增大而增加,进水压力每增加0.1 MPa,产水率增加13%~37%,膜通量增加9%~33%。根据溶解-扩散模型[10],进水压力增加的同时,跨膜压差增加,导致Jw增大。在膜通量Jw增加的同时,Q减小,K增大,并且K增大的速度大于Jw增大的速度。透盐率随着进水压力的增大而减小,进水压力每增加0.1 MPa,透盐率减小3%~14%。

    增加进水压力的方式有2种:方式A,调节浓水阀,减小浓水流量;方式B,增加进水泵频次。进水压力增加的同时可以带来其他参数的变化,结果如表1所示。本研究采用方式A提高进水压力。

    有研究[11]表明,采用方式A增加进水压力可以提高透盐率,与本实验结果相反,文献中关于浓差极化变化的观点无法解释本实验的现象。有研究[12-17]表明,采用方式B增加进水压力,进水量、浓水量和产水率随之增加,浓水量的增加导致了膜表面浓差极化现象减弱,因此进水侧膜表面离子浓度减小,从而导致产水的离子浓度降低,即透盐率降低。但方式B增加进水压力导致浓差极化减小的结论需要论证,浓差极化的变化取决于膜表面水流的径向速度和纵向速度,径向速度变大可增强浓差极化现象,纵向速度变大可减弱浓差极化现象。如表2所示,2种方式的产水率均有所增大,因此,V/V值均增大。在方式A和方式B中,提高进水压力均会导致浓差极化现象增强。

    笔者认为,根据选择吸附毛细管理论,RO膜表面的浓差极化现象增加导致膜表面的各种离子浓度增加,相互排斥作用加强,因此,各种离子透过RO膜难度增大。随着进水压力的增大,膜通量和透盐量同时增加,而透盐量增加的速度小于膜通量增加的速度,因此,产水的含盐量减小,透盐率减小。本研究结果表明,在一定范围内,如果只考虑透盐率因素,增加反渗透工艺的浓差极化可以降低透盐率。综上所述,在一定范围内,提高进水压力既可以增加产水率,又可以降低透盐率,有利于整套系统的运行。

    2)通过调节风式冷却塔和系统进水量改变RO进水温度,产水率及膜通量的变化如图7所示,透盐率的变化如图8所示。在压力不变的情况下,产水率随着水温的升高而增加,进水温度每升高1 ℃,产水率增加约0.25%,膜通量增加约0.47%,随着温度升高,水的黏度变小,因此,膜通量和进水量均有增加。根据式(3)可知,进水量Q随着温度的增加而升高,因此,膜通量Jw增加的速度大于产水率K增加的速度。在压力不变的情况下,透盐率随着水温的升高而升高,进水温度每升高1 ℃,透盐率增加约6.7%。水温的升高同样会导致透盐率的增大,这主要是因为盐分透过膜的扩散速度会因水温的升高而加快[18]

    综上所述,在一定范围内,提高RO系统进水温度可以增加产水率和透盐率,整套系统可以根据产水水质和水量的要求以调节进水温度。

  • 对整个流程各个节点的指标进行检测,并与锅炉给水(SY/T 0097-2016)指标进行对比,结果如表3所示。含油量、悬浮物和矿化度等指标完全满足锅炉给水的要求。

    pH由7.31下降到6.86,这是因为RO膜可以脱除溶解性的离子而不能脱除溶解性的气体,产水中的CO2和进水中CO2的基本相等,而产水中HCO3大幅度减少,由于水中的CO2HCO3存在平衡方程(式(4)),因此,原有的平衡被打破,平衡方程式向右移动,导致H+浓度增加,故导致pH下降。

    RO水中的硬度和pH未达到锅炉给水的标准,使用常规的树脂交换可以除掉残余硬度,用液碱可以调节pH,在此不做深入研究。

  • 1)油田采出水经过气浮后,剩余的原油以乳化油和溶解油的形态存在,直径小于10 µm,经过生化处理后,水中的剩余原油为0.63 mg∙L−1,满足超滤膜的进水要求。

    2)生化处理后的油田采出水,对超滤膜的污染程度很小,在一定范围内,水中的悬浮物含量与膜污染速度无关,跨膜压差ΔP的增加速度为0.000 046 2 MPa·d−1;进水悬浮物数值短时间较大波动会引起跨膜压差的暂时升高或降低,当悬浮物数值恢复正常后,跨膜压差可以恢复到前期水平。

    3)增大反渗透进水压力会导致产水率增加、膜通量增加、透盐率降低,产水率和膜通量增加是膜两侧压力差增大的结果,透盐率降低,是浓差极化加强导致的结果;升高进水温度会导致产水率增加、膜通量增加、透盐率增加,产水率和膜通量增加是水粘度变小的结果,透盐率升高,是水中的离子扩散速度变大的结果。

    4)油田采出水利用生化双膜工艺制备锅炉用水的方法是可行的。处理后的水质含油量为0 mg∙L−1、悬浮物为0 mg∙L−1、矿化度为81 mg∙L−1,可以达到锅炉给水的要求;而硬度和pH达不到锅炉给水的标准,需要进一步处理。

参考文献 (18)

返回顶部

目录

/

返回文章
返回