-
工业废水中的氮、磷如果处理不当或直接排放,会导致水体富营养化,威胁生态系统的安全[1-3]。工业废水中的氨氮(
${\rm{NH}}_4^ + $ -N)转换成硝态氮(${\rm{NO}}_3^ - $ -N)或亚硝态氮(${\rm{NO}}_2^ - $ -N)后,毒性会更大,对水生生物的生存造成威胁,并可能危害人类健康[4]。磷广泛应用于工农业,但在自然界中,单向循环导致磷的不可再生性,未来将面临着严重的磷短缺[5]。因此,废水中氮的无害化去除,同时实现磷资源的回收是当前工业废水处理中的热点。工业废水领域常用的对氮、磷的处理方法有结晶法[6-7]、吸附法[8]、生物法[9-10]以及化学沉淀法[11]等。依靠单一的沉淀法或者氧化法,很难实现废水同时脱氮除磷。近年来,以过一硫酸盐(peroxymonosulfate,PMS)为基础的高级氧化工艺(advanced oxidation process,AOPs)处理废水中难降解污染物的研究受到关注[12]。利用超声波、紫外线辐射、加热、金属离子或金属氧化剂和非金属催化剂等方法,可有效活化PMS,并产生多种活性自由基[13-15]。亚铁离子(Fe2+)可以有效活化PMS产生活性物种,实现罗丹明B的高效降解[16]。另外,研究者还发现活化PMS产生的
${\rm{SO}}^{\cdot -}_4 $ 可以进一步将水中Cl−氧化成为氯自由基(Cl·)[17]。而污水中的${\rm{NH}}_4^ + $ 在Cl·作用下可转化成氮气(N2),实现无害化去除[18]。本研究以
${\rm{NH}}_4^ + $ 、${\rm{PO}}_4^{3 - }$ 为目标污染物,通过向溶液中投加FeCl2和PMS,将废水中的${\rm{NH}}_4^ + $ 选择性氧化成N2,以实现${\rm{NH}}_4^ + $ 的无害化去除,同时生成的Fe3+在一定条件下与${\rm{PO}}_4^{3 - }$ 可生成磷酸铁(FePO4)沉淀实现磷的回收;为详细探讨${\rm{NH}}_4^ + $ 、${\rm{PO}}_4^{3 - }$ 同步去除及磷回收的过程机制,进一步考察PMS初始浓度、Fe2+/Cl−比、pH、共存${\rm{CO}}_3^{2 - }$ 和HA等多种因素对反应效果的影响,以期为工业废水中氮、磷的处理与资源化利用提供参考。
氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收
Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus
-
摘要: 采用氯化亚铁(FeCl2)活化过一硫酸盐(PMS)产生硫酸根自由基(
${{\rm{SO}}^{\cdot -}_4} $ )和氯自由基(Cl·),实现了水中${{\rm{NH}}_4^ +} $ 、${{\rm{PO}}_4^{3 - }}$ 的同步无害化去除及磷的回收。研究了Fe2+/PMS/Cl−体系中的反应机制,考察了PMS浓度、Fe2+/Cl−、溶液pH、温度、溶液共存${\rm{CO}}_3^{2 - }$ 浓度及腐殖酸(HA)浓度等条件对反应体系的影响。结果表明:当溶液pH为4.0、PMS投加量为20 mmol·L−1、Fe2+/Cl−摩尔分数为1/12时,反应30 min后,溶液中的${{\rm{NH}}_4^ +} $ 去除率高达100%且以氮气(N2)形式实现${{\rm{NH}}_4^ +} $ 无害化去除;${{\rm{PO}}_4^{3 - }}$ 的去除率也高达100%且以磷酸铁(FePO4)沉淀形式被回收;随着PMS浓度、Fe2+/Cl−以及温度的升高,Fe2+/PMS/Cl−体系中,${{\rm{NH}}_4^ +} $ 去除率逐渐增大,但对${{\rm{PO}}_4^{3 - }}$ 的回收无明显影响;溶液中${\rm{CO}}_3^{2 - }$ 和HA的存在对${{\rm{NH}}_4^ +} $ 去除有抑制作用。通过自由基淬灭实验和ESR分析证明,${{\rm{SO}}^{\cdot -}_4 }$ 和Cl·在Fe2+/PMS/Cl−体系中起主要作用。本研究结果可为氮磷废水的处理及磷回收提供参考。Abstract: This study achieved the simultaneous and harmless removal of${\rm{NH}}_4^ + $ and${\rm{PO}}_4^{3 - }$ and the recovery of phosphorus from wastewater by using an approach that exploited ferrous chloride (FeCl2) to activate peroxymonosulfate (PMS) and thereby producing sulfate radicals (${\rm{SO}}^{\cdot -}_4 $ ) and chlorine radicals (Cl·) to solving the very problem. The mechanism in Fe2+/PMS/Cl− system was investigated. The effects of different reaction conditions including PMS dosages, Fe2+/Cl−, pH, temperature, coexistence of${\rm{CO}}_3^{2 - }$ and humic acid (HA) concentration on the degradation of${\rm{PO}}_4^{3 - }$ and${\rm{NH}}_4^ + $ were evaluated. The results indicated that the removal efficiency of${\rm{NH}}_4^ + $ reached 100% and${\rm{NH}}_4^ + $ was harmlessly removed in the form of nitrogen (N2). And the removal efficiency of${\rm{PO}}_4^{3 - }$ was as high as 100% and was recovered in the form of iron phosphate (FePO4) precipitates at 30 min when the pH of the solution was 4.0, the PMS dosage was 20 mmol·L−1 and Fe2+/Cl− mole fraction was 1/12. In Fe2+/PMS/Cl− system, high PMS concentration, high Fe2+/Cl−and high temperature, were proved to be favorable in the degradation of${\rm{NH}}_4^ + $ . However, these conditions had almost null effect on the recovery of${\rm{PO}}_4^{3 - }$ . The removal of${\rm{NH}}_4^ + $ was slightly inhibited in the presence of${\rm{CO}}_3^{2 - }$ and HA. The radical quenching experiment and ESR results indicated that${\rm{SO}}^{\cdot -}_4 $ and Cl· played a major role in Fe2+/PMS/Cl− system. This study can provide reference for the treatment of nitrogen and phosphorus wastewater and phosphorus recovery. -
-
[1] ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726. doi: 10.1007/BF02804901 [2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. doi: 10.1126/science.1167755 [3] 金相灿. 湖泊富营养化控制和管理技术[M]. 北京: 化学工业出版社, 2001. [4] WARD M H, RUSIECKI J A, CANTOR L K P. Nitrate in public water supplied and the risk of renal cell carcinoma[J]. Cancer Causes & Control, 2007, 18(10): 1141-1151. [5] ZHANG Z Q, SHE L, ZHANG J, et al. Electrochemical acidolysis of magnesite to induce struvite crystallization for recovering phosphorus from aqueous solution[J]. Chemosphere, 2019, 226: 307-315. doi: 10.1016/j.chemosphere.2019.03.106 [6] ANTAKYALI D, SCHMITZ S, KRAMPE J, et al. Nitrogen removal from municipal sewage sludge liquor through struvite precipitation for application in a mobile plant[J]. Journal of Residuals Science Technology, 2005, 2: 221-226. [7] KOCHANY J, LIPCZYNSKA-KOCHANY E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation: A comparative study[J]. Journal of Hazardous Material, 2009, 166(1): 248-254. doi: 10.1016/j.jhazmat.2008.11.017 [8] SCHNEIDER M, DRENKOVA-TUHTAN A, SZCZERBA W, et al. Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: Understanding the role of different material-building-blocks[J]. Environmental Science-Nano, 2016, 4(1): 180-190. [9] ZHANG Z G, PAN S L, HUANG F, et al. Nitrogen and phosphorus removal by activated sludge process: A review[J]. Mini-Reviews in Organic Chemistry, 2017, 14(2): 99-106. doi: 10.2174/1570193X14666161130151411 [10] RASHED E M, EL-SHAFEI M M, HEIKAL M A, et al. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR) in domestic wastewater[J]. HBRC Journal, 2014, 10(1): 92-99. doi: 10.1016/j.hbrcj.2013.08.008 [11] FENG C P, SUGIURA N, SHIMADA S, et al. Development of a high performance electrochemical wastewater treatment system[J]. Journal of Hazardous Materials, 2003, 103(1/2): 65-78. [12] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7443. [13] DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571(15): 643-657. [14] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151(5): 178-188. [15] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. [16] KURUKUTLA A B, KUMAR P S S, ANANDAN S, et al. Sonochemical degradation of rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: Proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2): 129-140. doi: 10.1089/ees.2014.0328 [17] 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118 [18] JI Y Z, BAI J, LI J H, et al. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system[J]. Water Research, 2017, 125: 512-519. doi: 10.1016/j.watres.2017.08.053 [19] VANLANGENDONCK Y, CORBISIER D, LIERDE A V, et al. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique)[J]. Water Research, 2005, 39(19): 3028-3034. [20] ZHANG J J, ZHAO X, WANG Y, et al. Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation[J]. Environmental Science & Technology, 2020, 54(2): 1204-1213. [21] SONG X, PAN Y, WU Q, et al. Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280(1/2/3): 384-390. [22] WANG M, YANG Y, ZHANG Y. Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density[J]. Nanoscale, 2011, 3(10): 4434-4439. doi: 10.1039/c1nr10950b [23] DONG B, LI G, YANG X, et al. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment[J]. Ultrasonics Sonochemistry, 2018, 42: 452-463. doi: 10.1016/j.ultsonch.2017.12.008 [24] NAGARAJU P, SRILAKSHMI C, PASHA N, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-O catalysts[J]. Applied Catalysis A: General, 2007, 334(1/2): 10-19. [25] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(3): 1027-1284. [26] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [27] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [28] OLIVER B G, CAREY J H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine[J]. Environmental Science & Technology, 1977, 11(9): 893-895. [29] MA J, MA W, SONG W, et al. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light[J]. Environmental Science & Technology, 2006, 40(2): 618-624. [30] 廖云燕, 刘国强, 赵力, 等. 利用热活化过硫酸盐技术去除阿特拉津[J]. 环境科学学报, 2014, 34(4): 931-937. [31] NIE M, YANG Y, ZHANG Z, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047 [32] 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. [33] RASTOGI A, AL-ABED S R, DIONYSIOU D D, et al. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179. [34] HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118. [35] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2016, 310: 41-62. [36] JI Y F, DONG C X, KONG D Y, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms[J]. Journal of Hazardous Materials, 2015, 285: 491-500. doi: 10.1016/j.jhazmat.2014.12.026 [37] DENG L, SHI Z, ZOU Z, et al. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of orange G[J]. Environmental Science & Pollution Research, 2017, 24(12): 1-13. [38] MA J, GRAHAM N J D. Degradation of atrazine by manganesecatalysed ozonation: Influence of humic substances[J]. Water Research, 1999, 33(3): 785-793. doi: 10.1016/S0043-1354(98)00266-8 [39] WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulseradiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates[J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.