[1] ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726. doi: 10.1007/BF02804901
[2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. doi: 10.1126/science.1167755
[3] 金相灿. 湖泊富营养化控制和管理技术[M]. 北京: 化学工业出版社, 2001.
[4] WARD M H, RUSIECKI J A, CANTOR L K P. Nitrate in public water supplied and the risk of renal cell carcinoma[J]. Cancer Causes & Control, 2007, 18(10): 1141-1151.
[5] ZHANG Z Q, SHE L, ZHANG J, et al. Electrochemical acidolysis of magnesite to induce struvite crystallization for recovering phosphorus from aqueous solution[J]. Chemosphere, 2019, 226: 307-315. doi: 10.1016/j.chemosphere.2019.03.106
[6] ANTAKYALI D, SCHMITZ S, KRAMPE J, et al. Nitrogen removal from municipal sewage sludge liquor through struvite precipitation for application in a mobile plant[J]. Journal of Residuals Science Technology, 2005, 2: 221-226.
[7] KOCHANY J, LIPCZYNSKA-KOCHANY E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation: A comparative study[J]. Journal of Hazardous Material, 2009, 166(1): 248-254. doi: 10.1016/j.jhazmat.2008.11.017
[8] SCHNEIDER M, DRENKOVA-TUHTAN A, SZCZERBA W, et al. Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: Understanding the role of different material-building-blocks[J]. Environmental Science-Nano, 2016, 4(1): 180-190.
[9] ZHANG Z G, PAN S L, HUANG F, et al. Nitrogen and phosphorus removal by activated sludge process: A review[J]. Mini-Reviews in Organic Chemistry, 2017, 14(2): 99-106. doi: 10.2174/1570193X14666161130151411
[10] RASHED E M, EL-SHAFEI M M, HEIKAL M A, et al. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR) in domestic wastewater[J]. HBRC Journal, 2014, 10(1): 92-99. doi: 10.1016/j.hbrcj.2013.08.008
[11] FENG C P, SUGIURA N, SHIMADA S, et al. Development of a high performance electrochemical wastewater treatment system[J]. Journal of Hazardous Materials, 2003, 103(1/2): 65-78.
[12] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7443.
[13] DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571(15): 643-657.
[14] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151(5): 178-188.
[15] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
[16] KURUKUTLA A B, KUMAR P S S, ANANDAN S, et al. Sonochemical degradation of rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: Proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2): 129-140. doi: 10.1089/ees.2014.0328
[17] 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
[18] JI Y Z, BAI J, LI J H, et al. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system[J]. Water Research, 2017, 125: 512-519. doi: 10.1016/j.watres.2017.08.053
[19] VANLANGENDONCK Y, CORBISIER D, LIERDE A V, et al. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique)[J]. Water Research, 2005, 39(19): 3028-3034.
[20] ZHANG J J, ZHAO X, WANG Y, et al. Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation[J]. Environmental Science & Technology, 2020, 54(2): 1204-1213.
[21] SONG X, PAN Y, WU Q, et al. Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280(1/2/3): 384-390.
[22] WANG M, YANG Y, ZHANG Y. Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density[J]. Nanoscale, 2011, 3(10): 4434-4439. doi: 10.1039/c1nr10950b
[23] DONG B, LI G, YANG X, et al. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment[J]. Ultrasonics Sonochemistry, 2018, 42: 452-463. doi: 10.1016/j.ultsonch.2017.12.008
[24] NAGARAJU P, SRILAKSHMI C, PASHA N, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-O catalysts[J]. Applied Catalysis A: General, 2007, 334(1/2): 10-19.
[25] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(3): 1027-1284.
[26] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[27] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
[28] OLIVER B G, CAREY J H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine[J]. Environmental Science & Technology, 1977, 11(9): 893-895.
[29] MA J, MA W, SONG W, et al. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light[J]. Environmental Science & Technology, 2006, 40(2): 618-624.
[30] 廖云燕, 刘国强, 赵力, 等. 利用热活化过硫酸盐技术去除阿特拉津[J]. 环境科学学报, 2014, 34(4): 931-937.
[31] NIE M, YANG Y, ZHANG Z, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047
[32] 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19.
[33] RASTOGI A, AL-ABED S R, DIONYSIOU D D, et al. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179.
[34] HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118.
[35] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2016, 310: 41-62.
[36] JI Y F, DONG C X, KONG D Y, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms[J]. Journal of Hazardous Materials, 2015, 285: 491-500. doi: 10.1016/j.jhazmat.2014.12.026
[37] DENG L, SHI Z, ZOU Z, et al. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of orange G[J]. Environmental Science & Pollution Research, 2017, 24(12): 1-13.
[38] MA J, GRAHAM N J D. Degradation of atrazine by manganesecatalysed ozonation: Influence of humic substances[J]. Water Research, 1999, 33(3): 785-793. doi: 10.1016/S0043-1354(98)00266-8
[39] WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulseradiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates[J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.