马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂

刘浩, 李瑞, 包丽君, 王分分, 张旭坡, 曲东, 白志辉. 马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂[J]. 环境工程学报, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
引用本文: 刘浩, 李瑞, 包丽君, 王分分, 张旭坡, 曲东, 白志辉. 马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂[J]. 环境工程学报, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
LIU Hao, LI Rui, BAO Lijun, WANG Fenfen, ZHANG Xupo, QU Dong, BAI Zhihui. Production of Paenibacillus polymyxa biofertilizer using potato starch wastewater for vegetable cultivation[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
Citation: LIU Hao, LI Rui, BAO Lijun, WANG Fenfen, ZHANG Xupo, QU Dong, BAI Zhihui. Production of Paenibacillus polymyxa biofertilizer using potato starch wastewater for vegetable cultivation[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179

马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂

    作者简介: 刘浩(1988—),男,博士研究生。研究方向:微生物肥料。E-mail:lh880330@qq.com
    通讯作者: 白志辉(1971—),男,博士,研究员。研究方向:环境生物技术。E-mail:zhbai@rcees.ac.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2018ZX07110);国家重点研发计划项目(2016YFC0501400)
  • 中图分类号: X703.1

Production of Paenibacillus polymyxa biofertilizer using potato starch wastewater for vegetable cultivation

    Corresponding author: BAI Zhihui, zhbai@rcees.ac.cn
  • 摘要: 马铃薯淀粉废水中含有高浓度的淀粉、蛋白质等有机物。利用马铃薯淀粉废水培养植物促生菌,是实现其资源化利用的方法。采用单因素方法结合中心复合设计(CCD)的方法,对废水体积分数(浓度)、培养温度、初始pH这3个因素进行研究,优化马铃薯淀粉废水培养Paenibacillus polymyxa EBL06菌株的适宜生长条件。实验得到马铃薯淀粉废水培养P. polymyxa的最佳条件:废水COD为13.7 g·L−1,初始pH为7.17,培养温度为31.4 ℃。该条件下,培养21 h后,微生物活菌数为6.2×109 cfu·mL−1,与模型预测结果基本一致,可以达到《农用微生物菌剂国家标准》 (GB 20287-2006)。为了验证该菌剂的应用效果,进行了蔬菜种植实验。结果表明:P. polymyxa菌剂能有效提高小白菜的产量与品质,作物鲜重、干重、株高,以及维生素C含量别提高了68.6%、13.7%、5.6%、41.3%;相比于只施用化肥的组,菌剂同尿素的混施能提高氮肥的利用效率,小白菜植株中维生素含量提高了25.3%、硝酸盐含量减少了15.3%。以上研究结果可为马铃薯淀粉废水的资源化利用,以及P. polymyxa菌剂的应用推广提供参考。
  • 碳酸钡是从重晶石中获得的重要化学物质,我国主要采用碳化还原法生产碳酸钡,每年生产约70万t,约占世界碳酸钡产量的75%[1]. 由钡化合物在碳热还原和水/酸浸出过程中产生的废物称之为 “钡渣”,是钡盐工业生产中不溶的碱性工业固体危害废弃物[2],在《国家危险废物名录》(2021年版)的编号为HW47[3]. 碳化还原工艺的钡渣产污系数约为0.8[4],即每生产1 t钡盐要产生0.8—1 t钡渣[5],目前我国钡渣的年排放量超过100万t[6],累积总堆存量已超过千万t[7]. 钡渣中含有大量的可溶性钡,其中水溶性钡以BaS(0.5%—1.0%)为主[8],酸溶性钡以BaCO3、BaSiO3、BaSO3和Ba(FeO22为主[9],由于反应不完全,渣中仍可能存在少量未被还原的BaSO4 ,其占比约为20%—40%[10],还含有大量金属氧化物,主要包括BaO (37.60%)、SiO2(15.52%)、CaO (10.10%)、Al2O3(4.23%)、Fe2O3(3.29%)、MgO (1.44%)[11]. 钡渣中的可溶性钡离子具有毒害性和强碱腐蚀性,其浸出率高达92.8%[12],含钡离子溶液的致死量为0.8—0.9 g [13]. 对植物和动物构成潜在的毒性风险. 根据《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[14],危险固体废物浸出液中的钡离子浓度不应超过100 mg·L−1,而钡渣的浸出浓度通常大于1000 mg·L-1[15](采用HJ/T 299-2007固体废物浸出毒性浸出方法 ),超过危险废物填埋污染控制标准(GB18958-2001)国家标准[16]2—10倍以上. 钡渣长期堆放会占用大量农田和土地,在气温高时,钡渣会发生自燃反应放出SO2气体;由于雨水渗透,钡渣会流出大量含硫化物的黄色渗滤液,可转入地表水和地下水中,并逸出H2S气体,对土壤和地下水产生毒害作用[17]. 同时,浸出液中的 Ba2+具有累积效应,通过食物链进入人体,对自然环境和人类生活造成不可逆转的伤害;此外,由于钡渣中存在的碱性组分和BaS还会使土壤盐碱化[18].

    鉴于钡渣的潜在危害,国内外学者对钡渣的处理处置已有大量研究,主要集中于钡渣化学成分分析、处理工艺以及对其毒性的探讨,钡渣的处置工业化技术主要包括综合利用、资源回收和安全填埋等方面,但是国内在钡渣的综合利用和资源回收方面还处于研发试制阶段,尚未实现规模化的工业应用,并且容易造成二次污染. 钡渣的无害化和资源化处置方式主要有以焚烧降低毒性[19]、钡离子提取[20]、钡离子固化稳定化[21-22]等为主要的无害化处理手段和以作为建筑用材[4]、化工行业中提取高纯度钡盐[5, 8, 23-24]等为主的资源化处理手段. 钡渣的正确处理处置方式能够降低钡渣浸出液中的钡离子重金属毒性系数并进行综合减量化处理,但也存在局限性,在与其他物质的协同处理中不能充分发挥钡渣本身的优势,有用成分不能得以充分利用,进行产业循环. 综合以上处理处置现状分析,本研究提出钡渣的处理处置研究重点应从对钡渣的直接利用转向与其它物质的协同处理,实现“以废治废”和资源利用效益最大化.

    近年来,随着碳酸钡生产行业的迅速发展,钡渣的存量越来越多,钡渣处理处置技术也快速发展. 本文综述了钡渣无害化处理、资源化利用、综合减量化的研究,并结合一些工业实例,对此类有害固体废物的污染特点及治理工艺方案进行了讨论和思考,为工业生产中钡渣处理的科学理论研究与实际实践操作有效结合提供借鉴.

    碳酸钡碳化还原法中产生的工业危险废渣称之为钡渣,在该方法中,将重晶石(70%—75%)与焦煤或煤渣(30%—35%)混合、 破碎后经高温(800—1200 ℃)在回转炉中焙烧[4]. 重晶石中硫酸钡被煤还原为粗制硫化钡,用热水浸洗粗硫化钡,浸出的硫化钡溶液在澄清池中澄清,澄清液经输送至碳化塔后通入二氧化碳气体,硫化钡发生水解,并与二氧化碳发生碳化反应生成碳酸钡浆液,最终经脱硫、洗涤、真空过滤、干燥、粉碎,包装即为碳酸钡成品. 碳酸钡其生产过程中的化学反应和工艺流程见图1,碳酸钡生产工艺涉及化学反应[4]如下:

    图 1  碳酸钡生产工艺流程
    Figure 1.  Production process flow of barium carbonate
    BaSO4+2C=BaS+2CO2 (1)
    2BaS+2H2OBa(HS)2+Ba(OH)2 (2)
    Ba(OH)2+CO2=BaCO3+H2O (3)
    Ba(HS)2+CO2+H2O=BaCO3+2H2S (4)

    钡渣是一种大小不等的棕色至黑色的多孔状颗粒,粒度在200—300目之间,具有通过率高、颗粒细等特点,且钡渣本身具有较高的含水率达23%[25],钡渣细度模数为2.38,属于中砂范围[26]. 采用SEM-EDS对钡渣微观形貌和钡元素含量进行分析. 钡渣中有两种不同形貌的结构,一种是未分解重晶石/毒重石的层状结构(图2a),呈规则的黑色块状结构,其表面较光滑,未产生孔隙,具有与重晶石矿石相同的颜色和结构,其处钡元素含量为 87.55%;另一种是重晶石/毒重石分解后的多孔熔融结构(图2b),表面形成多孔结构,形成大小不同的孔洞,有大量的熔融物质存在而呈现出熔融状态,且熔融的钡渣中有大量的晶体物质析出,其处的钡元素含量为 78.98%,相对于图2a图2b的钡元素含量相对较低[27].

    图 2  (a)未分解重晶石扫描电镜图 ,(b)重晶石分解后扫描电镜图[27]
    Figure 2.  SEM image of samples:(a) undecomposed barite, (b) decomposed barite [27]

    钡渣具有强碱腐蚀性[1, 4],pH值一般在12以上,有的可达13,在水泥掺入情况下,Ba2+的浸出规律为阳离子型和两性型[28]. 钡渣中存留大量可溶性有害组分Ba2+,浸出浓度严重超标达1100 mg·L-1[13],远远高于入场填埋前的控制限值[16](≤150 mg·L−1),且具有毒性. 同时,钡渣化学组成成分复杂,与环境、生产工艺、检测方法等多因素有着密不可分的关系,学者采用重量法、原子吸收法、ICP-MS法对贵州省某公司重晶石生产碳酸钡产生的钡渣组成成分进行分析,主要为:BaSO4(14.59%)、BaSiO3(17.32%)、BaCO3(30.92%)、SiO2(24.33%)、Al2O3(6.83%)、还含有一定的痕量元素锶和稀土元素等 [27]. 除此之外,由于煤炭燃烧不彻底的原因,钡渣中也含有一定的碳元素成分[11]. 然而钡渣的化学成分并不是固定的组成,是在一定范围内波动,如表1所示. 其影响因素主要包括制造钡渣的重晶石/毒重石矿石的杂质成分、煤的成分及掺量、窑的分解率(矿石的分解率)、工艺条件的差异等. 重晶石的品位越高,即重晶石中的硫酸钡含量较高,而经高温锻烧后得到的硫化钡含量愈高,则得到的卤水中杂质愈少,钡渣的产率愈低,对钡渣组成和含量的影响最大的是重晶石品位. 由表1可以看出,钡渣中仍含有大量未被利用的钡资源,且新渣的钡元素含量多于陈渣.

    表 1  钡渣各成分分析
    Table 1.  Composition Analysis of barium slag
    样本编号Sample numberBaSO4/%BaCO3/%BaSiO3/%SiO2/%Al2O3/%BaS/%C/%参考文献References
    #128.5012.7026.004.000.71[25]
    #242.2012.7012.703.970.71[29]
    #314.1014.2211.574.00.95[22]
    #414.5930.9217.3224.336.830.33[26]
    #527.5429.3214.624.322.25[30]
    #614.5930.9217.3224.336.830.33[27]
    #718.425.122.9024.45.859.9819.99[31]
    #8a40.1013.213.640.74[32]
    b23.902.926.560.50
    #9a14.58631.8913.2471.286.27[33]
    b16.98422.8715.3381.346.58
      注:表中“#”表示钡渣样本; “—”表示未查到相关数据;“a”表示新渣;“b”表示陈渣.   Note: "#" in the table indicates barium slag samples;"-" indicates that no relevant data has been found;"a" indicates new barium slag; "b" indicates old barium slag.
     | Show Table
    DownLoad: CSV

    无害化处理也称安全化处理,即将有毒有害的废物中生物性或者化学性的有害物质,采用先进的技术和工艺,降低废弃物毒性及其衍生物对环境的影响,减少废物排放[34]. 进行无害化处理的最终目的是达到有效资源化利用,尤其有毒有害的工业废弃物是无害化处理的重点对象. 钡渣的无害化处理主要针对其中所含大量的碳酸钡等,碳酸钡在空气中长时间存放会和空气中的CO2、H2O等生成碳酸氢钡,形成的水溶性钡盐会对水资源等会产生严重的污染,综上,钡渣无害化处理主要是采用焚烧和化学沉淀的方式以增加对有毒有害钡离子的去除率.

    由于刚生产的钡渣是粘稠状物且带有不少的固体杂质,流动性能较差,不便进行无害化处理,因此需先将粘稠状渣子进行焚烧变成固体废料[19]. 但该处理方式并没有从根本上有效去除钡渣中有毒有害物质,且由于没有完善的尾气处理设施和热量回收系统,焚烧方式存在能耗高、利用率低,处理费用昂贵等问题的同时造成二次污染. 随着工业手段的不断进步,焚烧在钡渣治理中并没有被广泛采用,仅仅是作为资源化利用的前期处理试验参考方案. 经焚烧成干渣灰后,干渣灰与粘土、水的混合物料,烧制红砖并进行砖淋洗,测得淋洗液中Ba2+的含量从>100 mg·L−1降低到<10 mg·L−1[35].

    化学沉淀可用于处理含有有毒成分的危险废料,可将有毒成分转化为不溶性形式从而达到降低毒性、限制迁移的目的. 钡渣定性为危险废物,只有将其转性为一般工业固体废物才便于应用,含钡废料中有毒有害的游离钡以硫酸钡的形式沉淀出来,是化学性质较为稳定的不溶物质,且在化学反应中不易出现可逆反应和沉淀不完全的情况,且该物质对人体无害[21]. 同时,钡渣中的可溶性钡离子还可与其他的废渣进行协同沉淀,生成不溶的物质以固定钡离子,一定程度上减少可溶性有害钡离子的浸出率.

    钡渣硫酸根沉淀机制主要以硫酸[7]、硫酸钠[2, 22]、硫酸亚铁[36]等为主要修复成分进行钡渣入填埋场前的处理或是对已堆存钡渣进行无害化处理. 钡渣硫酸法转性生成硫酸钡沉淀可从一定程度上对酸回收利用,减少酸的用量,降低经济投入,同时采用硫酸法转性的钡渣作原料生产水泥,减少碱性氧化物(K2O和Na2O)的带入,在水泥烧制过程中减少在预热分解系统造成的结皮堵塞情况[7]. 硫酸钠加入钡渣的混合液中生成稳定的硫酸钡沉淀,当其硫酸钠的掺入过量系数介于1.25—2.20之间时[2, 21-22],可有效将可溶性钡进行固定无害化. 但由于钡渣的组成成分及含量不是单一的,其根据多种因素变化,需要根据实际的操作要求,对处理过程中多个方面综合考虑,进行钡渣的无害化处理. 某工厂所产特定钡渣,在硫酸钠过量系数为1.25、水加入量为25 mL、反应时间为2 h的条件下,对钡渣无害化处理后,钡离子毒性浸出浓度从原始的2087.4 mg·L−1降到84.67 mg·L−1,钡离子去除效率为96%[2]. 硫酸根沉淀机制能够在短时间内快速、彻底地将有毒有害的可溶性钡离子进行转化生成硫酸钡沉淀,但也存在其局限性,采用硫酸及硫酸盐与钡渣进行掺混以达到固定钡渣中可溶性钡的方式成本较高,处理后的钡渣中存在渗滤液硫酸根超标问题,且无法利用钡渣本身的硫离子成分,同时带入钠离子和亚铁离子,不利于无害化后的综合资源化利用. 由于钡渣多为团粒结构,且反应过快所生成的BaSO4沉淀会迅速包埋在钡渣颗粒及堵塞孔隙,反应无法深入到颗粒内部空孔隙,导致可溶性钡离子去除不彻底,仍具有浸出毒性[37]. 李绍华等[36]通过过氧化氢、硫酸盐和EDTA联合使用,过氧化氢可以迅速破坏废渣的有机物结构,同时与钡渣中硫离子发应生成硫单质和氢氧根离子,二者在碱性条件下发生歧化反应生成硫离子和亚硫酸根离子,亚硫酸根离子与钡离子生成亚硫酸钡沉淀;其后加入部分的硫酸钠增加了钡离子稳定性和较少的引入钠离子和亚铁离子;EDTA控制硫酸钡颗粒的体积,保证后续反应实现药剂的长效性.

    从“ 以废治废”理念出发,协同沉淀机制主要利用磷石膏[1, 38-39]、电解锰渣[40]、砷渣[41]、赤泥[42]等废料中的有效成分固定钡渣中的可溶性钡离子,同时解决相应的其他工业固废问题.

    (1)酸性固体废料磷石膏(pH<3)可以中和含碱性钡渣,利用石膏中的SO42-和磷(PO42-),可以沉淀固化可溶性的钡,既实现钡离子危险系数和腐蚀性(pH)的降低,又固化了磷石膏中的可溶性磷. 郭腾飞等[39]将磷石膏与钡渣10:1的比例混合,混合渣中Ba2+的浸出浓度从1285 mg·L−1降为1.44 mg·L−1,pH降低2个单位左右,同时混合渣中的磷溶出浓度(<0.5 mg·L−1),明显低于磷石膏本身的磷溶浓度(368 mg·L−1). Gu等 [1]试验发现,当钡渣与磷石膏质量比为10:(1—20)时,钡浸出浓度降至< 2 mg·L−1. 磷石膏有效协同沉淀可溶性钡离子且来源广泛成本低廉,但也有其局限性,处理后的钡渣具有过量的可溶性PO42-和未能充分利用钡渣中本身存在的S2-(酸性条件下S2-则会转化为H2S气体跑出),大量投加磷石膏,使得钡渣体积质量增多,相应的入场填埋的成本也会显著增加.

    (2)酸性锰渣含有少量水溶性Mn2+和大量的SO24,其SO24与钡渣中的BaS及BaCO3、BaSO3反应,生成稳定不溶的BaSO4,同时,锰渣中的Mn2+与钡渣中的OH-结合,生成Mn(OH)2并在空气中氧化为稳定不溶的MnO2. 当锰渣与钡渣以(1—3):(1—3.5)的比例混合并反应产生混合渣,不仅固定钡渣中钡盐,同时也能够固定锰渣中的可溶性锰,处理结束后混合渣pH值为8—12,浸取液中Ba2+的含量小于1 mg·L−1,Mn2+的含量小于2 mg·L−1[43]. 此外,电解锰渣与钡渣协同作用由于电解锰渣中含有MnO、Na2O、Fe2O3等助熔物质,可使得水泥熟料烧结温度降低,不仅减少能耗,同时能够促进水泥中各相在一定温度下共存,并且收获水泥性能好,成本低的有益效果[40]. 但由于锰渣不够普遍,且锰渣对钡渣的中和效果较差,锰渣的pH值为6—7,钡渣的pH值一般在高于12以上,处理后钡渣的pH值仍然较高.

    (3)砷渣常来自于含硫砷化合物的金属矿石的采选、冶炼、生产等过程,大量砷以含砷废渣形式堆存,属于危险固体废弃物. 钡渣中的可溶性钡与砷渣中的可溶性砷相互反应,生成难溶的砷酸钡,其溶解度较低,可避免二次溶出和大量使用稳定化药剂导致的其他环境问题,有利于降低钡渣和砷渣无害化处理过程中的稳定化药剂用量和增容. 车轶夫等[41]按钡渣中可溶性钡与砷渣中可溶性砷的摩尔比为(3.1—3.2): 2的比例混合,加入质量分数15%双氧水,0.1 mol·L−1硫酸调节废渣混合物pH为9,加入适量硫酸铁得到废渣混合物(含水率40%、pH 8.9)室温堆置养护7 d,废渣混合物中钡的浸出浓度从3281 mg·L−1减少到11.2 mg·L−1,砷浸出浓度从533 mg·L−1减少到0.76 mg·L−1,满足《危险废物填埋污染控制标准》(GB 18598-2019)中规定钡的稳定化控制限值为85 mg·L−1,砷的稳定化控制限值为1.2 mg·L−1的要求[16]. 但是,砷渣不够普遍,不能广泛推广,且可能造成运输成本.

    (4)赤泥是铝土矿生产氧化铝过程排放的一种碱性工业固体废弃物,与钡渣混合既可以固定钡渣中的酸溶性钡,又降低了赤泥中可溶性硫的浓度,同时降低钡渣的比重. 顾汉念等[42]将赤泥加入沥干的钡渣中,将混合料进行低温焙烧并保温30 min,发生不同程度的烧结而固化钡渣中的可溶性钡离子,实验结果显示,钡渣的酸溶性钡离子浓度低于100 mg·L−1,且硫的浓度从700 mg·L−1以上降低至150 mg·L−1以内. 赤泥排放量大来源广,添加赤泥也是消纳赤泥的过程,同时有利于混合渣在建材等领域的使用,但赤泥处理过程中产生了增容,且不能充分地利用钡渣中较多的钡盐资源.

    资源化是指将废弃物直接作为原料进行利用或者对废物进行再生利用[34]. 废弃物资源化已成为当今许多国家发展经济和保护环境的一项重大方针和政策. 当前对钡渣资源化处理主要是回收利用钡盐、余渣生产建筑材料和有用成分的转化再使用等.

    钡渣中仍含有大量未被利用的钡资源,其含量占钡渣主要成分的三分之一,可进行钡离子的浸取回收生产钡盐. 对钡渣中可溶性盐类进行回收利用,首先需要使用酸性溶剂浸取钡渣中的钡离子,从而使大部分的可溶性盐从钡渣中分离出来,其后通过除杂,冷却,结晶等一系列工艺制取高纯度的相关钡盐. 钡盐的浸出体系及其相关的数据如表2所示.

    表 2  钡盐的浸出体系
    Table 2.  Leaching system of barium salt
    工艺名称Process name产品纯度Product purityBa2+回收率Recovery rate of Ba2+产品种类Product category收益/(元·t−1)Income参考文献References
    一次盐酸浸取78.51%氯化钡400[5]
    二次盐酸浸取99.90%95.00%氯化钡400[24]
    氯化焙烧-水浸体系86.80%氯化钡400[10]
    乙醇-盐酸混合体系99.71%68.72%氯化钡400[27]
    硫酸法97.60%硫酸钡300—500[30]
    硝酸法99.20%85.51%硝酸钡700[44]
      注:“—”表示未查询到相关数据.   Note: "—" indicates that no relevant data has been found.
     | Show Table
    DownLoad: CSV

    钡渣提纯氯化钡主要用盐酸进行浸取提纯. 提纯方式从一次盐酸浸取[23]优化进展到两次盐酸浸取[24],其氯化钡的纯度可从70.99%增加到99.9%. 工艺的不断优化可一定程度上提高钡渣资源化利用和经济环境效益. 利用钡渣生产氯化钡,使用的酸为盐酸,其成本及危害较硝酸和硫酸都小,且废酸处理更容易,既能将钡渣资源利用最大化,实现绿色环保理念的同时产生一定经济价值.

    以钡渣为原料,利用盐酸浸取钡离子工艺条件为:3.0 mol·L−1盐酸浓度,液固比7∶1,浸取时间2 h,浸取温度80 ℃,搅拌速度400 r·min−1浸取出来进行二次利用,在此工艺条件下钡离子浸出率可达78.51%[5]. 但一次盐酸浸取法存在酸耗大,耗时长,除杂困难,有用成分不能充分利用等的问题,处理工艺有待优化. 唐英等[24]采用两次盐酸洗渣和浸取,将目标物钡以及杂质铁、钙、锶等同时酸化为相应的氯化物,进入酸液后过滤并通过调节pH、加入沉淀剂、溶剂洗涤等方法除去杂质,钡的回收率可达 95%,产品纯度可达99.9%. 两次盐酸浸出工艺简单,成本低且不引入杂质,盐酸、草酸、乙醇等试剂均能重复使用. 除单一使用盐酸浸取的工艺条件外,加入其他的化学试剂及工艺的优化能够有效回收钡盐的同时减少酸用量,减少成本. 废渣利用乙醇-盐酸混合体系以盐酸浓度 1.0 mol·L−1,液固比 1:1的条件进行洗渣(除去钡渣中除钡离子外的其他离子),以2.0 mol·L−1盐酸浓度,液固比3:1,60 ℃下反应4 h,400 r·min−1搅拌速度的工艺方法浸提洗渣所剩残渣中钡离子,钡离子浸出率可达 68.72%,滤液中氯化钡含量为 95.16%,产品纯度达99.71%[27]. 尚方毓等[10]采用氯化焙烧-水浸的工艺方法,在1000 ℃下焙烧45 min、氯化钙用量为理论量的 1.3 倍的条件下钡渣中的酸溶钡可全部回收,钡的回收率为 86.8%.

    钡渣中重晶石含量大多在20%左右,特别是部分反应未烧透且颗粒较大的重晶石和部分烧结共生体,其含量可达30%以上. 采用跳汰工艺对未反应完全的重晶石进行再利用,重晶石组分硫酸钡的回收率可达80%以上,跳汰回收后的废渣进行酸化处理以硫酸钡的形式回收,其纯度可达98%以上[30]. 废渣酸化是将钡渣固体用盐酸浸取其中酸溶性钡和水溶性钡,使其转化为可溶性的氯化钡溶液,通过调节溶液中的酸碱度(pH=12),除去溶液中的铁、铝等离子,最后使用硫酸将氯化钡溶液中的钡离子沉淀出来,经处理制得硫酸钡成品,其硫酸钡含量可达97.60%[45]. 钡渣制取硫酸钡发生如下化学反应[33]

    BaCO3+2HCl=BaCl2+H2O+CO2 (5)
    BaSO3+2HCl=BaCl2+H2O+SO2 (6)
    BaS+2HCl=BaCl2+H2S (7)
    BaSiO3+2HCl=BaCl2+H2SiO3 (8)
    FeCl2+2NaOH=Fe(OH)2+2NaCl (9)
    FeCl3+3NaOH=Fe(OH)3+3NaCl (10)
    BaCl2+H2SO4=BaSO4+2HCl (11)

    钡渣泥和水的混合物加热,加以适当浓度硝酸进行化合,钡渣中的BaCO3、BaSiO3、BaSO3、BaS与HNO3发生反应生成Ba(NO3)2、BaCO3和Ba(OH)2,经调控 pH 值,除杂、浓缩结晶、烘干、粉碎、包装即成为成品,重晶石产生的钡渣泥可生产 95% 硝酸钡,其中酸溶性钡利用率可达85. 51%[44],其硝酸钡含量可达99.2%[33]. 但硝酸的腐蚀性强,且实验过程中易产生有毒气体NO或NO2,其应用受到了限制. 钡渣生产硝酸钡主要发生的化学反应如下[27]

    BaCO3+2HNO3=Ba(NO3)2+H2O+CO2 (12)
    BaS+2HNO3=Ba(NO3)2+H2S (13)
    BaSO3+2HNO3=Ba(NO3)2+H2O+SO2 (14)
    BaSiO3+2HNO3=Ba(NO3)2+H2SiO3 (15)

    以钡渣为原料,通过加酸回收利用钡渣中有用成分,制取生产氯化钡、硫酸钡、硝酸钡之后的废渣,可继续加入芒硝(Na2SO4)二次沉淀Ba2+,避免 Ba2+溶出的同时生成BaSO4 沉淀用于民用建筑的建材生产代替砂石,具有明显的环境效益和经济效益. 解决钡渣有害性,降低钡离子浸出率的同时,再生产的钡盐也具有相当的经济效益,据调研,钡渣生产的氯化钡400元·t−1 [46],硝酸钡700元·t−1 [47],硫酸钡300—500元·t−1 [8],可充分实现废物价值增值.

    从建筑材料的巨大需求来看,经无害化处理的钡渣作为一种建筑材料大规模再利用是一个的选择,既能大量、高效地使用钡渣,又能降低钡渣堆放对周边环境的影响,且促进建材的发展,增加建材的强度,节约建设投资. 钡渣在建材行业的主要应用存在于以下几个方面.

    由于钡渣中含有大量的水泥熟料矿物,并存在少量的碱性成分如BaS、Ba(OH)2,促使钡渣具有较好的胶凝性作用和对矿灰/粉煤灰中的活性SiO2、Al2O3具有激发作用[48]. 普通混凝土用砂的细度模数范围在2.3—3.0,而钡渣的细度模数为2.38,属于中砂范围,可当做细集料添加至混合料中作为混凝土用砂使用,实验表明,当钡渣全部代替砂应用于水泥混凝土的生产中,28 d抗压强度为26.5 MPa、抗折强度为4.53 MPa,满足C20混凝土设计要求[26]. 经无害化处理的钡渣水泥混凝土建造的构建筑物,可溶性钡浓度很小(可溶性钡浓度在 0.1—0.5 mg·L−1,小于《生活饮用水卫生标准》(GB5749-20062)钡浓度 0.7 mg·L−1 标准要求)[49],可安全使用. 在烧制硅酸盐水泥过程中掺入适量钡渣(保证熟料中 BaO 含量在1.2%左右),Ba2+置换Ca2+进入水泥主要强度相(C2S、C3S)内部,影响其晶格转变,使 C2S晶格缺陷增加以提高活性,Ba2+可部分进入中间相,改变中间相的高温粘度,促进 C3S 结晶长大[50]. 钡渣作为水泥矿化剂在水泥生料烧成前加入,不仅加速固相反应过程,还可以降低硅酸盐水泥的烧成温度,改善硅酸盐水泥性能. 在作为添加剂加入水泥生产的时候,钡渣中含有一定量的硫酸钙,在水泥水化时形成钙矾石,使结构更加致密的缘故;在掺入10%—20%的钡渣后,可以减少甚至取消石膏,水泥仍然具有正常的凝结时间,故钡渣对水泥还具有缓凝剂的作用[51]. 此外,在碱活化矿渣水泥制作中使用钡渣,其中的SiO2及少量硅酸盐成分可以加快水化过程,优化水化产物的组成,使硬化试样具有优异的力学性能和耐久性,显著提高了低碱当量基体的力学性能和耐久性,可以显著改善低碱当量碱活化矿渣水泥膏体的力学性能,优化其孔隙结构[52]. 同时由于钡渣中的钡元素是一种内核质较大的金属元素,使用钡渣制备的水泥具有阻挡射线的作用,所产生的防辐射水泥也具有较大的发展前景[33]. 需要注意的是,在前期处理阶段不能将钡渣磨得太细,要保持相当的粒度,否则会影响普通硅酸盐水泥水化[53].

    利用钡渣修筑路面基层,钡渣稳定土基层中强度成型机理主要是钡渣中的Ba2+取代土粒表面Na+、K+,使土颗粒的结构水薄膜而聚结成团粒,增大钡渣稳定土的内摩阻力,再经过压实,在一定的温度和湿度下,BaSiO3(呈凝胶状)与BaCO3、BaSO4结晶体相互联结和粘结,形成具有较高的强度和良好的水稳性的稳定结构. 这样的处理在一定的程度上减少了可溶性Ba2+的淋溶渗透性,减轻一部分的钡渣毒性[47]. 通过添加60%钡渣路面基层的强度可以达到修建二级和二级以下公路基层的要求,钡渣基层的强度达到了修建高等级路面基层的质量要求. 钡渣具有一定的细度,在混合料中与沥青的接触面积大,形成的沥青胶浆更多,同时含有少许大于4.75 mm的颗粒可部分代替0—3 mm玄武岩细集料充当骨料,形成钡渣SMA-10改性沥青混合料,当钡渣掺量为5%—15%时,混合料满足高、低温性能和水稳定性的要求[54].

    无害化处理后的钡废渣可制作干渣灰红砖[35]、免烧砖[20]、钡渣混凝土实心砖[55]、泡沫混凝土砌块[30]、非承重砖[29]等. 根据钡渣的干湿程度进行焚烧制得干渣灰,干渣灰的掺入量为15%时干渣灰红砖产品的抗压抗折强度为最高,且在烧制之后其淋溶液中Ba2+的含量小于10 mg·L−1[35]. 但制作红砖用时长、能耗大,过程中可变因素较多且损耗浪费钡渣中的大量的钡资源. 张孟雄[56]以钡渣为主要原料,利用石灰、水泥等激发剂的作用,在机械强制压力作用下紧密接触致使颗粒之间在表面层发生化学反应,生成水化硅酸钙钡、水化铝酸钙钡、水化硫铝酸钙钡;同时在蒸发和含水率降低过程中液相达到过饱和状态,晶体不断析晶并开始凝结,部分Ca(OH)2和水溶性的BaS与空气中CO2反应生成CaCO3和BaCO3,硬化进一步紧密和坚固,经过28 d养护后每十块成品建材砖抗压强度可达 12.3 MPa,且抗冻性能良好. 但该种方法所制得钡渣砖均重2.28 kg,比重过大,远高于普通建筑用砖. 由钡的相对原子质量 137 g·mol−1可知,钡属于重金属,钡渣的主要重量来自于含钡化合物质量,钡渣在经过无害化处理和其他有用成分的回收后,可溶性钡浸出,剩余残渣因失去了大部分的含钡化合物而质量得以大幅度减轻,比重减小. 杨立春等[29]利用钡渣残渣,添加矿渣、水泥、粉煤灰、生石灰、石膏和轻质外加剂膨胀珍珠岩生产非承重砖,其强度可达到 10 MPa 以上,该种方法不仅能改善砖体强度,还能很好的降低砖体的密度. 需要注意的是,钡渣中的有毒有害钡元素通过化学反应无害化处理被除去后,进行其他钡盐产品的生产,最后将其中的各种元素提取较净后,再采用剩余的废渣用于建筑领域,而这种应用将会使得需要向其中加入大量的水泥或者其他增强剂和固化剂,增加了制砖成本. 为解决这一问题,陈彦翠等[57]在钡渣烧结砖的制作中加入固化剂、页岩、煤矸石,使不用加入水泥,即能够获得强度较高、抗冻融性能较优的钡渣烧结砖,并且能够容纳钡渣量为30—40%,进而最大限度的利用工业废弃物来进行建筑材料的制备,降低钡渣废弃物综合处理的成本.

    为了最大化的实现钡渣的再利用价值,考虑钡渣中的其他有用组成成分的运用. 重晶石中钡元素最多,锶元素次之,锶元素除煅烧浸取后进入碳酸钡产品中,还有部分残留于钡渣中. 相对于文献报道的地壳中锶的平均质量分数 0.0375%—0.042%[58],钡渣中锶的含量(硫酸锶0.024%、碳酸锶0.13%)较高,可进行锶离子的回收. 碳是钡渣中的主要成分之一,含量超过10%,其中的碳大部分来自煤/焦炭[59],重新回收的碳可在生产钡盐工艺中循环使用,明显降低成本又能减少钡渣的排放量,且减少后期在建材资源化利用中的活性干扰.

    钡渣盐酸洗渣滤液经除去Ca2+、Fe2+、Al3+,当 pH=12、温度为 80 ℃时,离子沉淀率分别达 91.6%、95.2%、91.7%;当加入70 mL Na2SO4(0.1 mol·L−1), 50 ℃下搅拌30 min ,钡离子去除率可达97.3%. 洗渣滤液经除钙、铁、铝和钡离子后蒸发结晶得六水氯化锶晶体,晶体经200 ℃,干燥 2 h 后制得氯化锶产品,钡渣锶离子回收率达 75.69%,其纯度可达 96.2%[27]. 对于锶含量较高的钡渣,以硝酸-硝酸铵混合液为锶浸取剂,以平均粒径140目,硝酸铵物质的量比为 4.35、浸取时间为 33 min的优化工艺条件下进行重复试验 3 次,所得到的锶浸取率平均值为94.38%,通过碱析除杂与重结晶工艺,制备的硝酸锶产品纯度达到 99.87%[59]. 由于碳的天然可浮性较好,采用泡沫浮选试验进行碳元素的回收处理有很好的浮选效果且能与其他的杂质有效的分开,得到的碳精矿产品指标较好[60]. Yang等[11]通过试验在矿浆pH=8.50,柴油捕获剂600 g·t−1,松醇油起泡剂500 g·t−1,浮选时间5 min的工艺条件下,碳回收率为82.70%,品位为63.25%. 浮选碳精矿可回收利用,低含碳量的浮选尾矿可用作建筑材料添加剂,不受碳的影响. 该种方法简单易操作,没有复杂的化学反应过程,不需要消耗大量的能源,能够有效避免破坏环境的行为.

    综上,钡渣资源化再利用主要是回收钡离子、锶离子和碳元素,同时生产制备氯化钡、硝酸钡、硫酸钡、氯化锶和硝酸锶等产品,再充分利用钡渣的其余有用组分,将其剩渣作为建筑材料的添加物. 在实现资源化利用的同时,可再利用的物质又具备经济效益,更大程度上实现废弃物效益最大化.

    减量化是固体废物处理的有效途径[34],也是钡渣综合性发展利用的最终目标. 降低固体废弃物的产生量,即“产前减量”,是处理固体废弃物最经济、有效、环保的方法. 减量化是循环经济的重要内容,实现从废物减量到价值创造. 钡渣综合科学研究是一个变害为利的过程,是无害化、资源化、减量化共同作用的过程. 首先对其进行无害化处理,以降低其有害毒性;其次应注重与其它废弃物的协同作用,达到以废治废的目的;最后可以利用钡渣自身优势参与其他废弃物的环境修复工作. 由于钡渣溶入水呈强碱性,可取代普通湿法脱硫工艺中的石灰用于烟气脱硫工艺,在液气比2.88,气速9.5 m·s−1条件下脱硫率可以达到85%以上[32]. 钡渣还可以与氢氧化钡协同处理含磷废水[25],主要修复机理为钡渣中Ba2+与磷酸根形成磷酸钡沉淀,钡渣还含有SiO2、Fe2O3、Al2O3等组分,在一定 pH条件下通过凝聚、吸附架桥和沉淀网捕等作用机制,使铝氧化物在水中发生羟基化和磷发生吸附凝聚反应;氢氧化钙能与磷发生沉淀反应,进一步降低水中含磷量. 钡渣也可处理含铬废水,可将含铬废水的治理成本降低80%[61]. 此外,经磷石膏处理的钡渣可作为一种高效的水溶液除磷吸附剂. 当钡渣和工业废磷石膏单独在水溶液中时,它们会向溶液中释放磷,而用磷酸盐缓冲液(钡渣与工业废磷石膏比10:1—10:3)处理的钡渣样品在大多数酸碱度范围内几乎不释放任何磷,可用作吸附磷酸盐的吸附剂,结果表明,在磷酸盐浓度为15 mg·g−1(以P计)时,对磷酸盐的吸附量为12.47和10.39 mg·g−1(以P计) [38]. 利用钡渣研究钡渣催化剂,二者提高了高效能源转换装置直接碳-固体氧化物燃料电池(DC-SOFCs)的性能和燃料利用率,为钡渣的绿色高效利用提供了新的途径[62].

    以生产钡盐产生的危险固体废料钡渣为研究对象,通过对钡渣的来源和理化性质的分析,从无害化处理、资源化利用、综合减量化入手,对钡渣处置处理的科学研究方法和实践操作有效结合进行研究,得出以下几个主要结论:

    (1) 经无害化处理,将钡渣的高值组分充分回收利用之后,剩下的余渣用于建筑材料及其他高附加值产品的生产,在保证浸出毒性达标的前提下进行废弃物的再利用,节约资源创造价值.

    (2)通过文献调研,阐述了国内外学者对钡渣无害化和资源化处理过程中的工艺方法并分析其优缺点,有利于含钡化合物行业针对自身情况从最大化利用程度进行钡渣的处置处理方案的设计. 从“以废治废”理念出发,结合钡渣自身特性与其他工业废弃物进行综合利用,减少治理成本,实现同时消纳两种或多种废弃物并且基本上零废物排放的综合经济环保效益.

    (3)钡渣中除含有 Si、Al、Ba、Ca、Mg、O、S 、Sr等多种元素外还含有少量稀有金属元素(如 Ti)和稀土元素. 当前对于钡渣中稀有金属元素和稀土元素回收使用的研究甚少,后续还需要进一步探索钡渣中有用组分的利用回收方法. 再之,在实验回收钡离子生产钡盐,其回收率和钡盐纯度及成本控制并未达到理想处理效果,钡盐的生产工艺流程和方法仍有很大的发展提升空间. 特别注意的是,钡渣建筑材料的使用方面,因钡渣中的钡金属污染及防治研究存在不足,亟待深入研究并加强对钡金属的治理和风险防控.

  • 图 1  废水含量对P. polymyxa生长的影响

    Figure 1.  Effect of wastewater content on production of P. polymyxa

    图 2  初始pH对P. polymyxa生长的影响

    Figure 2.  Effect of initial pH value of media on production of P. polymyxa

    图 3  不同温度对P. polymyxa生长的影响

    Figure 3.  Effect of different temperature on production of P. polymyxa

    图 4  各因素对菌体活菌数响应面图及等高线

    Figure 4.  Response surface and contour plot showing influence on living cell value

    图 5  最佳条件下P. polymyxa生长曲线

    Figure 5.  Growth curve of P. polymyxa under the best fermentation conditions

    图 6  COD和pH随时间变化曲线

    Figure 6.  Time variation curves of pH and COD

    图 7  不同处理对蔬菜质量的影响

    Figure 7.  Effect of different treatments on weight of vegetables

    图 8  不同处理对蔬菜株高的影响

    Figure 8.  Effect of different treatments on plant height of vegetables

    图 9  不同处理对蔬菜硝酸盐含量的影响

    Figure 9.  Effect of different treatments on nitrate content of vegetables

    图 10  不同处理对蔬菜维生素C含量的影响

    Figure 10.  Effect of different treatments on vitamin C content of vegetables

    表 1  中心复合设计处理选项及结果

    Table 1.  Central composite design arrangements and responses

    序号pH温度废水体积分数活菌数/(109 cfu·mL−1)
    实际值设计层次实际值/℃设计层次实际值/%设计层次 实际值预测值
    170401.6825004.94.52
    25.81−136.76173.7812.612.98
    3703205006.256.27
    48.19127.24−173.7814.363.95
    5703205006.566.27
    65.81−127.24−126.21−12.462.61
    78.19127.24−126.21−13.993.59
    8703205006.276.27
    97032010−1.6822.372.25
    107−1.6823205002.331.79
    117024−1.6825004.464.87
    125.81−136.76126.22−12.372.76
    13703205006.346.27
    145.81−127.24−173.7812.322.27
    15703205005.86.27
    1670320901.6822.612.74
    17703205006.396.27
    1891.6823205002.412.96
    198.19136.76126.22−12.452.47
    208.19136.76173.7813.573.39
    序号pH温度废水体积分数活菌数/(109 cfu·mL−1)
    实际值设计层次实际值/℃设计层次实际值/%设计层次 实际值预测值
    170401.6825004.94.52
    25.81−136.76173.7812.612.98
    3703205006.256.27
    48.19127.24−173.7814.363.95
    5703205006.566.27
    65.81−127.24−126.21−12.462.61
    78.19127.24−126.21−13.993.59
    8703205006.276.27
    97032010−1.6822.372.25
    107−1.6823205002.331.79
    117024−1.6825004.464.87
    125.81−136.76126.22−12.372.76
    13703205006.346.27
    145.81−127.24−173.7812.322.27
    15703205005.86.27
    1670320901.6822.612.74
    17703205006.396.27
    1891.6823205002.412.96
    198.19136.76126.22−12.452.47
    208.19136.76173.7813.573.39
    下载: 导出CSV

    表 2  P. polymyxa中心设计预测数据差异性分析

    Table 2.  Analysis of variance for the predictive equation for production of P. polymyxa biomass

    方差来源平方和自由度均方Fp显著性
    模型52.7295.8630.22< 0.000 1显著
    (A) pH1.6511.658.520.015 3不显著
    (B)温度0.1510.150.750.405 3不显著
    (C)稀释度0.2910.291.490.249 6不显著
    AB0.8010.804.150.069 1不显著
    AC0.2410.241.260.288 7不显著
    BC0.1610.160.830.383 4不显著
    A227.20127.20140.38< 0.000 1不显著
    B24.4614.4623.020.000 7不显著
    C225.55125.55131.84< 0.000 1显著
    残差1.94100.19
    矢拟1.6150.324.890.053 1不显著
    误差0.3350.07
    总和54.6519
      注:变异系数(CV)=10.9%;决定系数R2=0.964 5;调整确定系数R2=0.932 6;预测确定系数R2=0.767 2。
    方差来源平方和自由度均方Fp显著性
    模型52.7295.8630.22< 0.000 1显著
    (A) pH1.6511.658.520.015 3不显著
    (B)温度0.1510.150.750.405 3不显著
    (C)稀释度0.2910.291.490.249 6不显著
    AB0.8010.804.150.069 1不显著
    AC0.2410.241.260.288 7不显著
    BC0.1610.160.830.383 4不显著
    A227.20127.20140.38< 0.000 1不显著
    B24.4614.4623.020.000 7不显著
    C225.55125.55131.84< 0.000 1显著
    残差1.94100.19
    矢拟1.6150.324.890.053 1不显著
    误差0.3350.07
    总和54.6519
      注:变异系数(CV)=10.9%;决定系数R2=0.964 5;调整确定系数R2=0.932 6;预测确定系数R2=0.767 2。
    下载: 导出CSV
  • [1] EASTMAN A W, HEINRICHS D E, YUAN Z C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness[J]. BMC Genomics, 2014, 15(1): 851. doi: 10.1186/1471-2164-15-851
    [2] 陈雪丽, 王光华, 金剑, 等. 多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果[J]. 中国生态农业学报, 2008, 16(2): 446-450.
    [3] BENT E, BREUIL C, ENEBAK S, et al. Surface colonization of lodgepole pine (Pinus contorta var. latifolia [Dougl. Engelm.]) roots by Pseudomonas fluorescens and Paenibacillus polymyxa under gnotobiotic conditions[J]. Plant and Soil, 2002, 241(2): 187-196. doi: 10.1023/A:1016147706578
    [4] 杨少波, 刘训理. 多粘类芽孢杆菌及其产生的生物活性物质研究进展[J]. 微生物学通报, 2008, 35(10): 1621-1625. doi: 10.3969/j.issn.0253-2654.2008.10.021
    [5] XU S, BAI Z, JIN B, et al. Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants[J]. Scientific Reports, 2014, 4(1): 4131.
    [6] 张煜欣, 刘慧燕, 方海田, 等. 马铃薯淀粉加工的副产物及资源化利用现状[J]. 中国果菜, 2020, 40(1): 46-52.
    [7] 李芳蓉, 贺莉萍, 王英, 等. 马铃薯淀粉生产废水资源化处理及综合利用[J]. 粮食与饲料工业, 2018, 12(6): 31-37.
    [8] 张泽俊, 苏春元, 刘期成. 马铃薯淀粉厂工艺废水的综合处理及利用研究[J]. 食品科学, 2004, 25(Z1): 134-137. doi: 10.3321/j.issn:1002-6630.2004.z1.032
    [9] WU D. Recycle technology for waste residue in potato starch processing: A review[J]. Procedia Environmental Sciences, 2016, 31: 108-112. doi: 10.1016/j.proenv.2016.02.015
    [10] 颜东方, 贠建民. 马铃薯淀粉废水生产微生物絮凝剂菌株筛选及其营养条件优化[J]. 农业工程学报, 2013, 29(3): 198-206.
    [11] NITSCHKE M, PASTORE G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J]. Bioresource Technology, 2006, 97(2): 336-341. doi: 10.1016/j.biortech.2005.02.044
    [12] 范海延, 梁胜贤, 王栋, 等. 利用甘薯淀粉生产废水培养侧孢短芽孢杆菌的研究[J]. 沈阳农业大学学报, 2015, 46(3): 352-356. doi: 10.3969/j.issn.1000-1700.2015.03.015
    [13] 沈连峰, 王谦, 高俊红, 等. 淀粉废水处理技术研究进展[J]. 河南农业大学学报, 2006, 40(4): 440-444. doi: 10.3969/j.issn.1000-2340.2006.04.025
    [14] 席淑淇, 成玮, 刘培富. 利用废水生产光合细菌提取天然色素的研究[J]. 污染防治技术, 1997, 10(2): 65-67.
    [15] 田雅婕. 酵母发酵马铃薯淀粉加工废水生产SCP的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [16] 黄峻榕, 高洁, 龚频, 等. 马铃薯淀粉废水中蛋白质回收方法的研究进展[J]. 食品科技, 2012, 37(2): 89-92.
    [17] 关晓欢. 柠檬酸废水和马铃薯淀粉废水资源化培养解淀粉芽孢杆菌及其应用[D]. 大连: 辽宁师范大学, 2013.
    [18] GU L, BAI Z, JIN B, et al. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater[J]. Journal of Environmental Sciences, 2010, 22(9): 1407-1412. doi: 10.1016/S1001-0742(09)60267-9
    [19] 洪鹏, 安国栋, 胡美英, 等. 解淀粉芽孢杆菌HF-01发酵条件优化[J]. 中国生物防治学报, 2013, 29(4): 569-578.
    [20] 李亚娜, 林永成, 佘志刚. 响应面分析法优化羊栖菜多糖的提取工艺[J]. 华南理工大学学报(自然科学版), 2004, 32(11): 28-32.
    [21] DALCIN M G, PIRETE M, LEMOS D A, et al. Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD)[J]. Journal of Environmental Management, 2011, 92(4): 1165-1173. doi: 10.1016/j.jenvman.2010.11.022
    [22] 陈子爱, 邓良伟, 贺莉. 硫氮比对废水脱氮与沼气脱硫耦联功能菌的影响[J]. 环境科学, 2011, 32(5): 1394-1401.
    [23] XIAOHUI F A N, ZHANG S, XIAODAN M O, et al. Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils[J]. Pedosphere, 2017, 27(6): 1027-1036. doi: 10.1016/S1002-0160(17)60379-5
    [24] 陈敏洁, 姜晓茹, 李亚飞, 等. 多粘类芽孢杆菌与化肥不同配施处理对生菜生长和品质的影响[J]. 河南师范大学学报(自然科学版), 2019, 47(3): 92-98.
    [25] 宿燕明, 彭霞薇, 吕欣, 等. 多粘类芽孢杆菌对油菜中硝酸盐含量的影响[J]. 中国农学通报, 2011, 27(12): 144-148.
    [26] 郭开秀, 姚春霞, 陈亦, 等. 上海市秋季蔬菜硝酸盐含量及风险摄入评估[J]. 环境科学, 2011, 32(4): 1177-1181.
    [27] 孙赫阳, 万忠梅, 刘德燕, 等. 有机肥与无机肥配施对潮土N2O排放的影响[J]. 环境科学, 2020, 41(3): 1474-1481.
    [28] 王冰清, 尹能文, 郑棉海, 等. 化肥减量配施有机肥对蔬菜产量和品质的影响[J]. 中国农学通报, 2012, 28(1): 242-247. doi: 10.3969/j.issn.1000-6850.2012.01.047
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.5 %DOWNLOAD: 2.5 %HTML全文: 78.2 %HTML全文: 78.2 %摘要: 19.3 %摘要: 19.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 88.7 %其他: 88.7 %Beijing: 2.1 %Beijing: 2.1 %Boulder: 0.1 %Boulder: 0.1 %Cangzhou: 0.0 %Cangzhou: 0.0 %Cebu City: 0.2 %Cebu City: 0.2 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Cyberjaya: 0.0 %Cyberjaya: 0.0 %Fuzhou: 0.0 %Fuzhou: 0.0 %Gaocheng: 0.0 %Gaocheng: 0.0 %Gulan: 0.0 %Gulan: 0.0 %Hangzhou: 0.2 %Hangzhou: 0.2 %Hefei: 0.0 %Hefei: 0.0 %Hongsipu: 0.0 %Hongsipu: 0.0 %Hyderabad: 0.1 %Hyderabad: 0.1 %Irpin: 0.1 %Irpin: 0.1 %Jakarta: 0.1 %Jakarta: 0.1 %Kongens Lyngby: 0.0 %Kongens Lyngby: 0.0 %Kunshan: 0.0 %Kunshan: 0.0 %Madison: 0.1 %Madison: 0.1 %Maszewo: 0.2 %Maszewo: 0.2 %Mexico City: 0.2 %Mexico City: 0.2 %Mountain View: 0.1 %Mountain View: 0.1 %Poznan: 0.1 %Poznan: 0.1 %Rayong: 0.2 %Rayong: 0.2 %Shanghai: 0.0 %Shanghai: 0.0 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.0 %Shenzhen: 0.0 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %The Bronx: 0.0 %The Bronx: 0.0 %Wuhan: 0.1 %Wuhan: 0.1 %Xi'an: 0.0 %Xi'an: 0.0 %Xiangtan: 0.0 %Xiangtan: 0.0 %Xiaoyouying: 0.0 %Xiaoyouying: 0.0 %XX: 4.7 %XX: 4.7 %Yangquan: 0.0 %Yangquan: 0.0 %Yinchuan: 0.6 %Yinchuan: 0.6 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhanjiang: 0.1 %Zhanjiang: 0.1 %上海: 0.0 %上海: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %北京: 0.4 %北京: 0.4 %哈尔滨: 0.0 %哈尔滨: 0.0 %商丘: 0.0 %商丘: 0.0 %张家口: 0.0 %张家口: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %盐城: 0.0 %盐城: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他BeijingBoulderCangzhouCebu CityChang'anChangshaCyberjayaFuzhouGaochengGulanHangzhouHefeiHongsipuHyderabadIrpinJakartaKongens LyngbyKunshanMadisonMaszewoMexico CityMountain ViewPoznanRayongShanghaiShenyangShenzhenShijiazhuangThe BronxWuhanXi'anXiangtanXiaoyouyingXXYangquanYinchuanYunchengZhanjiang上海乌鲁木齐亚特兰大北京哈尔滨商丘张家口济南深圳盐城运城郑州阳泉Highcharts.com
图( 10) 表( 2)
计量
  • 文章访问数:  7499
  • HTML全文浏览数:  7499
  • PDF下载数:  76
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-29
  • 录用日期:  2020-07-28
  • 刊出日期:  2020-09-10
刘浩, 李瑞, 包丽君, 王分分, 张旭坡, 曲东, 白志辉. 马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂[J]. 环境工程学报, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
引用本文: 刘浩, 李瑞, 包丽君, 王分分, 张旭坡, 曲东, 白志辉. 马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂[J]. 环境工程学报, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
LIU Hao, LI Rui, BAO Lijun, WANG Fenfen, ZHANG Xupo, QU Dong, BAI Zhihui. Production of Paenibacillus polymyxa biofertilizer using potato starch wastewater for vegetable cultivation[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179
Citation: LIU Hao, LI Rui, BAO Lijun, WANG Fenfen, ZHANG Xupo, QU Dong, BAI Zhihui. Production of Paenibacillus polymyxa biofertilizer using potato starch wastewater for vegetable cultivation[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2406-2415. doi: 10.12030/j.cjee.202006179

马铃薯淀粉废水资源化制备Paenibacillus polymyxa农用菌剂

    通讯作者: 白志辉(1971—),男,博士,研究员。研究方向:环境生物技术。E-mail:zhbai@rcees.ac.cn
    作者简介: 刘浩(1988—),男,博士研究生。研究方向:微生物肥料。E-mail:lh880330@qq.com
  • 1. 西北农林科技大学资源环境学院,杨凌 712100
  • 2. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 3. 中国科学院生态环境研究中心,环境生物技术重点实验室,北京 100085
  • 4. 中国科学院大学资源与环境学院,北京 100049
  • 5. 河北科技大学环境科学与工程学院,石家庄 050018
基金项目:
国家水体污染控制与治理科技重大专项(2018ZX07110);国家重点研发计划项目(2016YFC0501400)

摘要: 马铃薯淀粉废水中含有高浓度的淀粉、蛋白质等有机物。利用马铃薯淀粉废水培养植物促生菌,是实现其资源化利用的方法。采用单因素方法结合中心复合设计(CCD)的方法,对废水体积分数(浓度)、培养温度、初始pH这3个因素进行研究,优化马铃薯淀粉废水培养Paenibacillus polymyxa EBL06菌株的适宜生长条件。实验得到马铃薯淀粉废水培养P. polymyxa的最佳条件:废水COD为13.7 g·L−1,初始pH为7.17,培养温度为31.4 ℃。该条件下,培养21 h后,微生物活菌数为6.2×109 cfu·mL−1,与模型预测结果基本一致,可以达到《农用微生物菌剂国家标准》 (GB 20287-2006)。为了验证该菌剂的应用效果,进行了蔬菜种植实验。结果表明:P. polymyxa菌剂能有效提高小白菜的产量与品质,作物鲜重、干重、株高,以及维生素C含量别提高了68.6%、13.7%、5.6%、41.3%;相比于只施用化肥的组,菌剂同尿素的混施能提高氮肥的利用效率,小白菜植株中维生素含量提高了25.3%、硝酸盐含量减少了15.3%。以上研究结果可为马铃薯淀粉废水的资源化利用,以及P. polymyxa菌剂的应用推广提供参考。

English Abstract

  • Paenibacillus polymyxa是一类宿主广泛的植物促生菌(plant growth-promoting bacteria,PGPB)。由于它能分泌酶、植物激素、多肽类抗生素、功能蛋白等多种植物生理活性物质[1],对多种植物真菌、细菌等引起的植物病害具有较好的防治效果[2]、兼有生物农药和微生物肥料双重作用,且对人或动植物无致病性,所以被广泛地用于促进作物生产。很多国家和组织将其认证为可用于农业生产并商业化的微生物[3-4]P. polymyxa EBL-06菌株能在植物的叶际和根际定殖,对多种病原菌都有拮抗作用,并且能促进植物生长。XU等[5]通过生产P. polymyxa微生物肥料实现了红薯淀粉废水的资源化,探索出一种可行的高浓度有机废水资源化及生物肥料生产方法;该方法生产的微生物肥料有效提升了茶树的产量及茶叶的品质。

    马铃薯淀粉废水是指在生产马铃薯淀粉的过程中产生的废液。每产出1 t马铃薯淀粉,就会排出20 t相关废水[6]。马铃薯淀粉废水中含有大量淀粉、蛋白质、纤维素等有机物[7],属于无毒高浓度有机废水。其中,蛋白质含量为2~8 g·L−1,COD为6~30 g·L−1[8],SS为8.5~ 10 g·L−1。废水具有高泡沫、高浓度、高浊度的“三高”特点[9]。营养丰富的马铃薯淀粉非常适合作为微生物肥料开发材料[10]。因此,将其用于微生物肥料的开发,既能减少环境污染、减轻废水处理压力,又可实现资源的再利用[11-13]。席淑淇等[14]利用马铃薯淀粉废水培养光合细菌生产胡萝卜素,废水COD减小了70%以上。田雅婕[15]和黄峻榕等[16]发现,通过培养微生物,可以有效回收马铃薯淀粉废水中的蛋白质,降低废水COD。关晓欢[17]用马铃薯淀粉废水培养解淀粉芽孢杆菌,在初始pH为7.00~7.50、摇瓶机转速200 r·min−1、温度为36 ℃的条件下培养24 h后,微生物活菌数为2.2×109 cfu·mL−1

    本研究筛选出马铃薯淀粉废水培养解淀粉芽孢杆菌的最佳条件,利用马铃薯淀粉废水培养P. polymyxa,实现了废水的资源化,并通过盆栽实验研究P. polymyxa菌肥对蔬菜生长及品质的影响,验证了P. polymyxa作为菌肥使用效果,以期为马铃薯淀粉废水的资源化利用,以及P. polymyxa的应用推广提供参考。

  • 选用同课题组GU等[18]筛选自小麦叶际的P. polymyxa (EBL-06)作为菌株来源。使用的培养基为LB培养基。P. polymyxa发酵液活菌含量为6.5×109 cfu·mL−1。马铃薯淀粉废水为取自某马铃薯淀粉加工厂的新鲜高浓度废液。该废液的主要理化指标:pH为5.10,COD为26.7 g·L−1,SS为24.7 g·L−1, EC值为3.32 mS·cm−1,TN为2.15 g·L−1,TP为0.57 g·L−1,总钾1.06 g·L−1。选用小白菜“热抗605”作为盆栽实验作物,使用直径22 cm、高18 cm的塑料花盆进行盆栽实验。

  • 种子液制备:在斜面上刮取一环菌落,利用四区划线法在LB固体培养基上培养单菌落;从固体培养基上挑取单菌落接种于LB液态培养基中;35 ℃下在转速为180 r·min−1的摇床中培养16 h,即微生物对数生长期。活菌数的测定:使用稀释平板涂布法确定活菌数量。COD的测定:依据HJ/T 399-2007,使用消解分光光度法测量。硝酸盐和维生素C含量的测定:使用紫外分光光度法测定,分别在紫外区波长219 nm处和波长265 nm处测量硝酸盐和维生素含量。

  • 常规生产情况下,影响发酵结果的主要影响因素有:发酵温度、过程pH、通气量、培养时间:种子液接种量、发酵底物的浓度和营养组成等。实验选取废水浓度、发酵体系的初始pH和培养温度3个指标作为活菌数的影响因子,进行单因素初步优化[19-20]

    取新鲜的高浓度马铃薯淀粉废水(COD为26.7 g·L−1),加水稀释后废水体积分数为60%(即0.60 L废水加上0.40 L超纯水制备);制备5组不同pH梯度的马铃薯废水(各50 mL),调节pH分别为5.00、6.00、7.00、8.00、9.00;115 ℃的高温下蒸汽灭菌20 min,然后自然降温到室温,并接种2%的P. polymyxa种子液;在恒温30 ℃、转速180 r·min−1的摇床中培养24 h;最后测量各梯度的微生物活菌数。

    制备体积分数为60%的马铃薯淀粉废水50 mL共5组,调节pH至8.00;115 ℃的高温下蒸汽灭菌20 min,自然降温后按2%接种量接种P. polymyxa种子液;以180 r·min−1的转速,分别在24、28、32、36、40 ℃温度下进行摇床培养;24 h后测量各梯度的微生物活菌数。

    制备5组浓度梯度的马铃薯淀粉废水各50 mL,废水体积分数分别为20%、40%、60%、80%、100%;调节pH至8.00,在115 ℃的高温下蒸汽灭菌20 min;自然降温后按接种2%的P. polymyxa种子液;最后在恒温30 ℃、转速180 r·min−1的摇床中培养24 h,测量各梯度的微生物活菌数。

  • 利用Design Expert 8.0软件中的中心复合设计实验[21-22],依据单因素实验结果,设计pH、废水体积分数、稀释度这3个影响因子的层次及范围,最终确定5个设计层次,共20组实验处理。表1为各组的处理详细信息。

  • 将采集的土壤干燥过筛,随后将处理好的土壤分成42份,每份3.5 kg,分别装入盆栽花盆中。盆栽实验根据施肥不同分为7组处理:1) CK组,水500 mL;2) S组,稀释25倍的马铃薯淀粉废水500 mL(相当于0.09 g尿素);3) C组,化肥常规施肥(每盆0.54 g尿素,相当于田间每亩投加30 kg尿素,水500 mL);4) C+M组,常规施肥(每盆0.30 g尿素)+稀释50倍发酵液500 mL (相当于0.05 g尿素);5) C+SM组,常规施肥(每盆0.3 g尿素)+灭菌发酵液稀释50倍500 mL(相当于0.05 g尿素);6)H组,发酵液稀释25倍500 mL (相当于0.09 g尿素);7) M组,发酵液稀释50倍500 mL (相当于0.05 g尿素);8) L组,发酵液稀释100倍500 mL (相当于0.02 g尿素)。每个处理均有6个平行,每个平行中栽种5株实验作物。实验于8月下旬种植,10月上旬收获。

  • 图1~图3为单因素实验结果。在废水体积分数为40%、60%时,马铃薯淀粉废水中活菌数较高,分别为6.0×109 cfu·mL−1和6.2×109 cfu·mL−1,二者无明显差异。因此,初步认为菌体生长的最佳废水体积分数为50%。初始pH和培养温度的单因素实验中,在初始pH为7和培养温度为32 ℃的条件下,马铃薯淀粉废水中活菌数达到了较高水平,分别为6.1×109 cfu·mL−1和6.3×109 cfu·mL−1。综合以上3组单因素实验结果,初步认为马铃薯淀粉培养P. polymyxa的最佳条件为:废水体积分数50%;初始pH为7.00;培养温度为32 ℃。

  • 在单因素实验结果基础上,通过Design Expert 8.0建立二阶响应曲面模型,以活菌数为因变量(Y),以pH (X1)、温度(X2)、废水体积分数(X3)为自变量,建立二阶响应曲面方程,得到回归模型(式(1))。

    式中:Y为活菌数,是因变量,109cfumL1X1X2X3分别为自变量pH、温度、废水体积分数。

    由式(1)可确定最佳工艺条件:废水体积分数为51.4%,pH为7.17,培养温度31.4 ℃。预测出最大培养菌数为6.30×109 cfu·mL−1

    中心复合实验得到的响应面及等高线见图4。其中,图4(a)图4(b)为废水体积分数及pH交互作用对菌体发酵效果的影响,表明当温度值固定时(32 ℃),响应面存在峰值;此时的废水体积分数为50%,pH为7.00,活菌数为6.3×109 cfu·mL−1图4(c)图4(d)为废水体积分数及温度交互作用对菌体发酵效果的影响,表明当pH固定时(7.00),响应面存在峰值,此时的废水体积分数为50%,培养温度为32 ℃,活菌数峰值为6.3×109 cfu·mL−1图4(e)图4(f)为温度及pH交互作用对菌体发酵效果的影响,表明当废水体积分数固定时(50%),响应面存在峰值,此时温度为32 ℃,pH为7.00,活菌数为6.3×109 cfu·mL−1图4中各组等值线均为椭圆形,表明两两因素间交互作用对菌体发酵存在明显影响。中心复合实验结果接近回归模型预测的最佳条件和活菌数数量。

    中心复合实验设计所建立的模型差异性分析结果见表2。该数学模型P=0.000 1<0.01,故可判断活菌数与pH(X1)、温度(X2)、废水体积分数(X3)这3个因子的回归方程关系为极显著。根据数学模型的回归方程决定系数R2=0.964 5,表明该模型可以解释96.45%响应值的变化,回归方程拟合结果良好。失拟项P=0.053 1>0.05,失拟关系不显著,表明建立的数学模型拟合过程中出现异常误差比例小,所得模型可信度高。此外,数学模型的变异系数CV=10.9%<15%;R2AdjR2Pred差值为0.165,差值<0.2,这2项结果说明了建立的响应面模型具有较高的可信度与精密度。

  • 为验证中心复合实验所预测的菌体最佳发酵条件及发酵菌体过程中对COD的去除效果,在预测的最佳发酵条件下,测得菌体发酵的生长曲线及COD的变化曲线。最佳发酵条件为,马铃薯废水体积分数为51.4%(COD=13.7 g·L−1),pH调节为7.17,培养温度为31.4 ℃,灭菌后接种2% P. polymyxa种子液,放入180 r·min−1摇床培养。取样间隔为3 h,分别测定样品中活菌数及吸光度。图5为测量得到马铃薯淀粉废水培养P. polymyxa的生长曲线。通过生长曲线的测定,可得出3~6 h为培养P. polymyxa的生长延迟期;6~21 h为培养P. polymyxa的生长对数期;在21~24 h为P. polymyxa繁殖稳定期,测定的活菌数峰值为6.18×109 cfu·mL−1,基本符合预测值。图6P. polymyxa培养过程中马铃薯淀粉废水的COD和pH变化,废水中COD随着培养的进行逐渐减少。培养27 h后,COD从最初的13.7 g·L−1降至5.1 g·L−1,说明能较好地去除粉马铃淀粉中的COD(去除率为62.8%)。废水pH随着培养的进行而逐渐上升,在培养24 h后,pH升至7.91,反应体系呈弱碱性。

  • 1) P. polymyxa菌剂对蔬菜鲜质量、干质量及株高的影响。P. polymyxa菌剂对蔬菜鲜质量、干质量及株高的影响:图7图8分别为不同施肥处理对蔬菜质量和株高的影响。各处理组的蔬菜鲜质量明显高于CK。在相同施氮水平下,相比于空白组,P. polymyxa菌剂与尿素减量混施(C+M)处理组蔬菜鲜质量增长了145.5%;相比于CK组,尿素组(C)的蔬菜鲜质量增长了157.7%。两者结果相近,说明菌剂也能代替一部分肥料促进植物生长,即表明微生物菌肥替代部分化肥是切实可行的。相比于CK组,只施用菌剂的处理(H、M和L)蔬菜鲜质量增幅分别为78.7%、68.6%、55.0%。这可能是由于生物菌肥没有提供足够的氮元素来满足植物生长及合成蛋白质的需要[23],导致单独使用P. polymyxa菌肥的增产相较于尿素做肥料时效果较差。相比于CK组,灭活的菌肥处理组(C+SM)蔬菜鲜质量增幅为96.3%,增产效果相较于C+M处理组较差。这可能是由于菌肥中的P. polymyxa在生长过程中分泌植酸酶等植物生长物质,促进了植物的生长[24]

    与对照组CK相比,处理组C、C+M、C+SM均能明显提高蔬菜的质量,增幅分别为87.7%、84.9%、74.0%,处理组H、M、L的增幅分别为17.8%、13.7%、12.3%。因此,微生物菌肥同化肥混用能有效提高植物的质量,单独施用微生物菌肥对植物质量增产有限。在蔬菜株高上,施用化肥的3个处理组C、C+M和C+SM间无明显差距,只施用微生物菌肥的3个处理组H、M、L的植物株高明显低于施用化肥组,故认为施用化肥可有效提高蔬菜株高。

    2) P. polymyxa菌肥对蔬菜硝酸盐含量的影响。图9为不同处理组中蔬菜硝酸盐的含量,表明仅施用化肥处理组(C)蔬菜的硝酸盐积累量最高,为1.74 g·kg−1。这说明施加氮肥会造成蔬菜中氮素明显增加。在相同施氮水平下,C+M处理组蔬菜硝酸盐含量为1.47 g·kg−1,相比于只施加尿素的处理组C,蔬菜内硝酸盐积累降低了15.3%。P. polymyxa在生长过程中会消耗氮素产生氨基酸、酯类等物质[25]。由于植物在利用土壤中的氨基酸这一过程中会消耗较少的能量,所以植物会优先吸收土壤中氨基酸。P. polymyxa将土壤中氮素消耗转变为氨基酸,既能减少蔬菜中硝酸盐的积累,又能提高蔬菜的产量[26-27]。这可能是微生物菌肥降低蔬菜硝酸盐积累的原因。

    3) P. polymyxa菌肥对蔬菜维生素C含量的影响。维生素C是蔬菜品质的重要评估指标。分析蔬菜中维生素C的含量,有助于鉴定微生物菌肥对蔬菜品质的影响[28]图10为不同处理组中蔬菜维生素C的含量,施用微生物菌肥处理组(H)蔬菜维生素含量最高。相比于空白处理组CK,蔬菜中维生素C的含量增加了59.1%;相比于只施用尿素的处理组C,蔬菜中的维生素C含量增加了34.2%。施用化肥能提高蔬菜的产量,但无法有效提高蔬菜品质,而微生物菌肥在提高蔬菜品质上有明显的优势。

  • 1)通过响应曲面法得到的马铃薯废水的最佳培养条件为:废水含量51.4%,初始pH 7.17,培养温度31.4 ℃。在该条件下培养21 h后,微生物活菌数为6.2×109 cfu·mL−1,基本吻合模型预测结果,产品满足国标要求。

    2)盆栽实验结果表明,菌剂产品能有效提高蔬菜的产量与品质。与空白组相比,蔬菜的鲜重、干重、株高,以及维生素C含量分别提高了68.6%、13.7%、5.6%、41.3%。菌剂与尿素混施的效果最佳。相同氮量情况下,小白菜中维生素含量较纯尿素处理提高了25.3%,硝酸盐含量降低了15.3%。

    3)利用马铃薯淀粉废水生产微生物菌剂的方法是可行的。菌剂既能保障作物产量,又能提升作物的品质。本研究可为马铃薯淀粉废水的处理与资源化利用,以及P. polymyxa菌剂的应用推广提供参考。

参考文献 (28)

返回顶部

目录

/

返回文章
返回