氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收

郭聪慧, 李一兵, 张娟娟, 郝经纬, 孙拓, 石永, 林松, 赵旭. 氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收[J]. 环境工程学报, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
引用本文: 郭聪慧, 李一兵, 张娟娟, 郝经纬, 孙拓, 石永, 林松, 赵旭. 氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收[J]. 环境工程学报, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
GUO Conghui, LI Yibing, ZHANG Juanjuan, HAO Jingwei, SUN Tuo, SHI Yong, LIN Song, ZHAO Xu. Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
Citation: GUO Conghui, LI Yibing, ZHANG Juanjuan, HAO Jingwei, SUN Tuo, SHI Yong, LIN Song, ZHAO Xu. Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069

氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收

    作者简介: 郭聪慧(1995—),女,硕士研究生。研究方向:高级氧化技术。E-mail:1939512099@qq.com
    通讯作者: 赵旭(1976—),男,博士,研究员。研究方向:环境电化学等。E-mail:zhaoxu@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(21777176);贵州省科技支撑计划项目(黔科合支撑[2019]2848号);观山湖区科技计划项目(观科合同[2018]16号)
  • 中图分类号: X703

Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus

    Corresponding author: ZHAO Xu, zhaoxu@rcees.ac.cn
  • 摘要: 采用氯化亚铁(FeCl2)活化过一硫酸盐(PMS)产生硫酸根自由基(SO4)和氯自由基(Cl·),实现了水中NH+4PO34的同步无害化去除及磷的回收。研究了Fe2+/PMS/Cl体系中的反应机制,考察了PMS浓度、Fe2+/Cl、溶液pH、温度、溶液共存CO23浓度及腐殖酸(HA)浓度等条件对反应体系的影响。结果表明:当溶液pH为4.0、PMS投加量为20 mmol·L−1、Fe2+/Cl摩尔分数为1/12时,反应30 min后,溶液中的NH+4去除率高达100%且以氮气(N2)形式实现NH+4无害化去除;PO34的去除率也高达100%且以磷酸铁(FePO4)沉淀形式被回收;随着PMS浓度、Fe2+/Cl以及温度的升高,Fe2+/PMS/Cl体系中,NH+4去除率逐渐增大,但对PO34的回收无明显影响;溶液中CO23和HA的存在对NH+4去除有抑制作用。通过自由基淬灭实验和ESR分析证明,SO4和Cl·在Fe2+/PMS/Cl体系中起主要作用。本研究结果可为氮磷废水的处理及磷回收提供参考。
  • 随着产业升级和城市扩张,大量工厂搬迁或废弃后遗留的场地存在土壤污染问题,需要进行土壤修复才能再次开发[1]。电阻加热技术具有对环境扰动小,受土壤异质性影响小,处理深度大等优点,尤其适合修复含有挥发性、半挥发性有机污染物的污染场地[2-5]。但在实际修复工程中,ERH技术的工程参数设计,例如电极间距、电场强度等,都会显著地影响场地电阻加热的实际效果[6],导致修复周期和成本控制的不确定性。修复场地的污染物分布、地下水流场和土壤特性等往往差异较大,但工程师只能根据已有工程经验和有限的取样勘探结果,进行原位加热工程的参数设计。若能够采用建模的方法,对场地条件下的加热过程进行预测,将有利于减少设计的盲目性,帮助缩短工程周期和控制修复成本。

    目前,对于ERH技术的数值模型已经有了一定的探索和应用。HIEBERT等[7-8]开发了用于模拟单相电阻加热过程的二维有限差分模型,并研究了不同的横卧电极设置方式对非均质含油地层的加热效果的影响。CARRIGAN等[9]将改进的欧姆加热模型与非等温多孔流动和传输模型进行了耦合,研究了电极阵列的电相位如何影响电阻加热的均匀性。MCGEE等[10]进一步简化了模拟多相电阻加热的欧姆方程,并模拟了电阻加热从非均质油砂中回收沥青的过程。KROL等[11]考虑温度对密度、粘度、扩散系数的影响,建立了二维有限差分模型,模拟了电阻加热到50 ℃的情况下对地下水流动的影响,发现地下水流动方向和流速发生显著变化。许丹芸等[12]使用有限元方法模拟了电阻加热土壤过程。

    尽管关于ERH技术的数值模型研究已有一定的开展,但一方面,以往的模型对电阻加热土壤过程中的水分蒸发缺乏关注和进一步的验证;另一方面,大部分模型是针对实际场地的验证评估,对如何运用模型指导ERH工艺参数的选取探讨不足。本研究使用COMSOL多物理场耦合软件,基于有限元计算方法开展原位电阻加热温度场模拟研究,建立了考虑土壤水分蒸发的模拟原位电阻加热温度场的数值模型。通过对比土柱装置小试实验和数值模拟的结果,验证了数值模型的准确性,并利用数值模型分析了场地尺度下电场强度、电极间距和地下水流动对电阻加热温度场的影响。本研究结果有助于预测修复周期和优化电极井布设,从而达到节约能源和降低修复成本的目的。

    本研究利用COMSOL的传热模块、电流模块、PDE模块以及电流和传热耦合的电磁热模块,构建土壤电阻加热模型。为简化模型概念,在模拟时做如下假设:1)忽略土壤和水在加热过程中密度、热容随温度的变化;2)将土体视为均质且各向同性的多孔介质,土壤初始温度均匀一致;3)忽略土体在加热过程中的热变形;4)忽略电极和土壤之间的接触电阻;5)由于实验土柱较短,需要考虑水分在低于沸点时的挥发[13],但在模拟大尺度的场地加热中,忽略水分的挥发;6)忽略水蒸气对热量传递的影响。

    电阻加热土壤过程中能量的控制方程如式(1)所示。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:ρeff为单元的有效密度,kg·m−3Ceff为单元的有效热容,J·(kg·K)−1T为温度,K;t为时间,s;λ为导热系数,W·(m·K)−1σ为土壤电导率,S·m−1E为电势梯度,V·m−1mLG为水的气化速率,kg·(m³·s)−1ΔHvap为水的潜热,J·kg−1ρf为流体密度,kg·m−3Cf为流体热容,J·(kg·K)−1uf为流体流速,m·s−1

    土壤单元的有效密度ρeff和有效热容Ceff由土壤中固,液,气三相的体积分数决定,如式(2)~式(3)所示。

    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)

    式中:θ表示各相的体积分数;ρ为各相的密度,kg·m−3C为各相的热容,J·(kg·K)−1;下标S,L,G表示固,液,气三相。

    土壤含水量的控制方程如式(5)所示。

    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    式中:DL为导水系数,m2·s−1α为比例常数,m2·s−1θL*为残余饱和度。

    液态水变为气态水的情况可分为2种,一种是低于水的沸点时的挥发,一种是到达沸点时的沸腾,用式(6)可以得到水的气化速率。需要注意,只有水的饱和蒸气压(p*)大于等于外部气压(pG)且含水量大于0时,沸腾才会发生。可以通过安托因方程[14](式(7))计算不同温度下水的饱和蒸气压,进而判断温度是否到达沸点。

    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    式中:A、B、C为经验常数;mvap为挥发速率,kg·(m³·s)−1kvap为蒸发速率常数,s−1

    土壤单元的热导率会随着温度和含水量的变化发生极大的变化,在此使用TARNAWSKI等[15]推导出的经验公式,如式(8)~式(9)所示。

    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)

    式中:下标sat和dry分别表示饱和和干燥状态的土壤;a~g为经验常数;Sw为水饱和度。

    电阻加热一般使用低频率电压(50~60 Hz),产生的电磁波长远大于系统的物理尺寸,位移电流可以忽略,因此可以假设电阻加热产生的电场为准静态电场,可以通过将欧姆定律代入电流连续性方程中来求解电势分布,电流连续性方程如公式(10)所示。

    stringUtils.convertMath(!{formula.content}) (10)

    土壤电导率则使用Archie定律进行计算[16-17],考虑温度对电导率的影响[18],如式(11)所示。

    stringUtils.convertMath(!{formula.content}) (11)

    式中: ψ为电势,V;φ为孔隙度;mnβ为经验常数(m为胶结系数,n为饱和度系数,β为温度系数);σL为土壤溶液电导率,S·m−1

    模拟单相交流电加热时,其电势分布与直流电基本一致,可以设置2个电极分别为接地和施加的电压。但模拟三相交流电时,电极电势与直流电则完全不同,三相交流电的电极电势可以视为由虚部和实部组成[19],如式(12)所示。

    stringUtils.convertMath(!{formula.content}) (12)

    式中:ω为角频率,rad·s−1t为时间,s;θ为相角,°(三相交流电分别为0 °、120 °和240 °);j为虚部;E0为正弦交流电振幅的绝对值,一般为电压的21/2倍,V。

    电阻加热土柱装置模型如图1(a)所示,装置高16 cm,内径4.5 cm。装置的罐体用不导电的聚四氟乙烯制成,内部装填细砂。装置2边为对称分布的用螺丝与螺母固定的不锈钢片电极,螺丝作为导电连接,电线连接到螺丝上以引入电压,热电偶从装置底部插入,用于监测土柱中心点的温度。使用Solidworks对电阻加热土柱装置进行建模,得到电阻加热土柱装置的几何模型,再导入到COMSOL中用于模拟,几何模型的网格划分均采用三角单元网格,单元大小选择细化。

    图 1  实验装置与场地模型
    Figure 1.  (a) Electrical resistance heating soil column device and (b) site geometric model

    为了模拟实际场地中电阻加热的过程,构建了图1(b)所示的三相电阻加热场地模型。场地模型为长宽15 m、高5 m的长方体,在场地中部按等边三角形放置3根半径20 cm、高5 m的电极,电极间距为6 m,并在3个电极构成的等边三角形中心点设置了温度监测点。

    电阻加热土柱装置数值模拟的边界条件为:1)流动边界条件,所有边界均设置为0通量边界条件,这是因为已在方程中添加了描述水蒸发的汇项;2)温度边界条件,所有边界均设置为自然对流热通量边界;3)电势边界条件,2个电极分别设置为接地和电势,其他边界设置为电绝缘边界。土壤的初始温度、含水量、水的电导率和电极电压根据实测得到的初始值设置。对于各项参数的取值如表1所示。

    表 1  数值模拟参数
    Table 1.  Numerical simulation parameters
    模拟参数取值模拟参数取值
    液体密度,ρL1 000 kg·m−3温度系数,β0.02
    固体密度,ρS2 650 kg·m−3比例常数,α5×10−6 m2·s−1
    气体密度,ρG1.9 kg·m−3经验常数,A8.07131
    液体热容,CL4 200 J·(kg·K)−1经验常数,B1 730.63
    固体热容,CS920 J·(kg·K)−1经验常数,C233.426
    气体热容,CG1 000 J·(kg·K)−11胶结系数,m1.44
    湿导热系数,λsat1.87 W·(m·K)−1饱和度系数,n2
    干导热系数,λdry0.23 W·(m·K)−1水的潜热,ΔHvap2 257.2 kJ·kg−1
    孔隙度,φ0.5蒸发速率系数,kvap1×10−6 s−1
     | Show Table
    DownLoad: CSV

    电阻加热场地模拟的边界条件为:1)流动边界条件,模拟地下水位上涨时,底部边界设置为通量边界条件,其他边界设置为0通量边界条件;2)温度边界条件,地下水流入的边界设置为流入边界,流入温度10 ℃,其他边界设置为热绝缘边界;3)电势边界条件,3个电极分别设置为三相电势中的1相,其他边界设置为电绝缘边界。各项参数的设置与土柱装置实验相同。

    为验证模型在不同的土壤含水量和土壤溶液电导率时的准确性,使用电阻加热土柱装置进行了验证实验。由于装置较小,电场强度较大,故使用电导率较小的细砂充当模拟土壤。分别向300 g细砂中加入40、50、60、70 mL的去离子水,质量分数为0.3%的NaCl溶液和质量分数为0.5%的NaCl溶液,充分搅拌,并装填进装置中。为了保持砂的孔隙度一致,在装填时保证装填高度为15 cm。加入去离子水的砂在100 V的条件下进行电阻加热,加入NaCl溶液的砂在50 V的条件下进行电阻加热。由于模拟只探究电阻加热的升温过程,所以实验只进行到温度到达100 ℃就停止,未加热到100 ℃时则在加热2 h后停止。

    为模拟实际工程环境下土壤内热量传递规律,用实际场地模型探究了地下水流动、电场强度和电极间距的变化对土壤温度变化的影响。模拟的工况如表2所示,其他参数与表1一致,土壤溶液电导率设为0.1 dS·m−1

    表 2  数值模拟工况
    Table 2.  Numerical simulation conditions
    工况电场强度/ (V·m−1)初始水饱和度地下水流速/ (m·s1)电极间距/m地下水涨速/ (m·d1)
    A-1300.6060
    A-2600.6060
    A-3900.6060
    B-190/600.6030
    B-290/600.6060
    B-390/600.6090
    C-19010.160
    C-29010.260
    C-39010.360
    D-1900.6060.05
    D-2900.6060.1
    D-3900.6060.2
     | Show Table
    DownLoad: CSV

    图2给出了不同含水率和电导率的情况下,土柱中心热电偶监测的温度变化。可以看出,随着含水量和土壤溶液电导率的增加,中心点加热到100 ℃所需要的时间不断减小。而当含水量较小或者土壤溶液电导率较小时,升温速率较小,甚至出现温度平台的情况。升温速率较小是由于此时土壤电导率较小[20],电流产生的焦耳热较小。升温速率减小则是因为,土柱中挥发掉的水份随着加热时间的增长逐渐变多[21],进一步降低了土壤电导率,使电流产生的焦耳热进一步减少。此外,由图2(a)可以看到,加入不同体积的去离子水后的细砂依然可以被加热,而去离子水的电导率几乎可以忽略不计。这说明,细砂中的离子溶解进入了去离子水中,提高了去离子水的电导率。

    图 2  土柱加入不同体积不同溶液中心点温度实测值与模拟值
    Figure 2.  Measured and simulated values of the center point temperature of the soil column, added with different volumes of different solutions

    为验证模型的可靠性,将不同含水量和土壤溶液电导率的电阻加热实测值和模拟值进行了对比。利用均方误差MSE和平均相对误差MRE评价模拟值和实测值的差异(式(12)~式(13))。

    stringUtils.convertMath(!{formula.content}) (13)
    stringUtils.convertMath(!{formula.content}) (14)

    式中:n为实测数据个数;MiSi分别为第i个实测和模拟得到的数据。

    图2(a)中给出的模拟值趋势线与实测值差异较小,实测值和模拟值均方误差为0.05~0.66,平均相对误差为0.42%~1.97%。较小的均方误差和平均相对误差表明,实测数据与模拟数据之间的偏差较小,模型具有较好的准确性。加入不同体积的0.3%NaCl(图2(b))和0.5%NaCl(图2(c))溶液,土壤溶液电导率随着NaCl溶液的体积和质量分数的增加而增大。对比实测和模拟预测结果,均方误差为0.38~12.29,平均相对误差为1.15%~5.32%。这表明,在较宽的土壤电导率范围内(加入70 mL的0.5%NaCl溶液时,土壤的电导率为1.1 dS·m−1),实测数据与模拟数据之间的偏差也较小,模型用于预测不同电导率的土壤加热过程是可靠的。误差产生的原因可能是,对土壤原有的电导率,实验过程中空气热对流导致的热量散失以及水分挥发速率的估值存在一定的偏差。

    电场强度是影响电阻加热升温速率的重要因素,由电极电压和电极间距共同决定,为了考察场地尺度下的温度场以及各条件对温度场的影响,建立了图1(b)的场地模型。图3图4分别展示了电极间距6 m时,30、60、90 V·m−1电场强度下加热70 d后,温度场的横截面以及位于3个电极中心点(见图1(b))温度的变化。从图3可以看出,电场强度越大,土壤升温速率越快,电极附近的升温更快,温度更高。这与MCGEE等[10]和HAN等[22]的研究结果是一致的。电流产生的焦耳热随电场强度的增大而增大,电场强度越大,土壤升温速率越快;电极附近的电流密度最高,产生的焦耳热最多,所以土壤升温速率更快。

    图 3  不同电场强度下加热70 d模拟场地横截面温度场
    Figure 3.  Cross-sectional temperature field of the site heated for 70 days under different electric field intensities
    图 4  电场强度对模拟场地中心点温度变化的影响
    Figure 4.  Effect of electric field intensity on central point temperature of simulated site

    图4可以看到,场地在加热90 d后,30、60和90 V·m−1电场强度获得的中心温度分别为25.5、49.1和100.0 ℃,中心点的平均升温速率分别为0.079,0.420和1.210 ℃·d−1。由式(1)可知,焦耳热与电场强度的平方呈正比,电场强度为30、60、90 V·m−1时中心点升温速率之比应为1∶4∶9,小于模拟得到的比值,即1∶5.3∶15.5。这说明,中心点的温度可能是电流焦耳热和外部热传导叠加共同决定。此外,电场强度为90 V·m−1时,当中心点温度达到97 ℃后,升温速率明显放缓。这是因为,此时的电极温度已经达到水的沸点,电极土壤水分蒸发带走了大量热量,导致土壤热导率和土壤电导率下降,从而使升温速率下降。

    电极间距的设置决定了电极井的数量,会极大地影响修复场地的成本和热传导过程。为探究电极间距这一单因素对电阻加热过程的影响,在保持电场强度90 V·m−1不变的条件下,模拟电极间距3、6和9 m时中心温度的变化,结果如图5所示。从图5(a)可以看出,在电场强度为90 V·m−1,电极间距为3、6和9 m时,中心点的温度达到100 ℃的时间分别为84、62和75 d,达到100 ℃的能耗分别为10 418、23 375和51 311 kW·h。综上可知,6 m为最适宜的电极间距,此时中心点的升温速率最快,且相较于电极间距为3 m时场地修复需要布设的电极井数量更少,相较于电极间距为9 m时需要的能耗更少。从图5(a)还可以看出,随着电极间距的增大,中心点升温速率先增大后减小。这是因为,为了保证电场强度一定,电压随电极间距增大而增大,导致电极处的升温速率也随之增大,这一定程度上弥补了间距增大导致的中心点热传导距离增大的不足。但是,9 m间距下的电压增加,造成电极附近温度过早达到水的沸点,导致电极周围土壤水分过早蒸发,土壤热导率和电导率下降,升温速率略为下降。

    图 5  90 V·m−1电场强度下电极间距变化和电极补水对模拟场地中心点温度的影响
    Figure 5.  Effect of electrode spacing and replenishment of water near the electrode on central point temperature of simulated site under the electric field intensity of 90 V·m−1

    为了考察电极附近土壤水分蒸发对中心点升温速率的影响,模拟了电场强度90 V·m−1、电极间距为9 m时,对电极附近补水的情况下,中心点温度的变化。从图5(b)可以看到,在加热40 d后,补水的情况下中心点温度明显高于不补水的情况,补水的情况下中心点的温度达到100 ℃的时间为68 d,比不补水的情况下早8 d。此结果表明,电极周围土壤水分过早蒸发是造成升温速率下降的原因之一,补水可以使土壤含水率增大,增加土壤的电导率和热导率,提高了升温速率。这与葛松等[3]的研究结果一致。监测电极的电流变化,并及时对电极附近进行补水,对于更快加热到目标温度至关重要。

    使用原位电阻加热的场地一般修复深度都较大,有必要考虑地下水流动和地下水位变化对温度场的影响。为进行预测,分别设定了0、0.1、0.2、0.3 m·d−1的地下水流速下加热30 d和0、0.05、0.10、0.20 m·d−1的地下水上涨速度下加热30 d的条件进行模拟,流入的地下水出的温度假定为10 ℃,温度场的变化结果如图6图7所示。从图6可以看到,随着地下水流速的增加,场地左侧的温度逐渐降低到10 ℃,温度场右移的趋势越明显,中心点的最高温度从100.0 ℃降低到38.5 ℃。这说明,较高的地下水流速会将场地中的热量带向下游,对场地升温速率造成不利影响,与MUNHOLLAND等[23]在二维沙箱中得到的结果一致。实际工程中应尽量减小地下水流速,必要时可增加侧向的物理屏障来形成止水帷幕,或通过蒸汽注入等手段来增加流入地下水的温度。

    图 6  地下水流速对场地横截面温度场的影响
    Figure 6.  Influence of groundwater velocity on temperature field of site
    图 7  地下水上涨速度对场地纵截面温度场的影响
    Figure 7.  Influence of groundwater rising speed on temperature field of site

    图7可以看到,随着地下水位上涨速度提升至0.1 m·d−1,场地下部和两侧的温度逐渐降低到10 ℃,但由不饱和区域变为饱和区域的土壤升温速率上升,中心点最高温度从51 ℃升高到100 ℃。随着地下水位上升速度达到0.2 m·d−1,相较于0.1 m·d−1时,温度场明显向上移动,中心点最高温度从100 ℃降低到54 ℃。这是因为,地下水位上涨可以起到一定的补水作用,提高不饱和区域土壤的电导率,从而提高土壤升温速率,但地下水上涨速度过快还是会导致流失的热量多于通过补水增加的焦耳热,使得场地温度从底部开始下降,不利于场地的修复。应当指出,由于实际场地地层的复杂性,地下水的流速和流向并不是均匀的。因此,对于非均质地层,可以建立相应的多模块的空间耦合模型,通过改变各地层模块的物理参数,从而实现数值模拟目标。

    1)电阻加热温度场数值模型与土柱装置实验数据吻合度较好,模拟值和实测值均方误差为0.05~12.29,平均相对误差为0.42%~5.32%,数值模型具有较好的预测准确性。

    2)场地模型研究发现,升温速率与电场强度成正比,电极处升温速率最快;电场强度为90 V·m−1时6 m为最适宜的电极间距,此时中心点升温速率最快,能耗相对较低,需要的电极井较少;模型考虑水分蒸发的情况下,电极周围土壤水分会更早蒸发,导致土壤升温速率下降,此时对电极附近补水可以显著增加土壤升温速率,故在实际工程中应监测电流和功率,并及时对电极附近进行补水。

    3)场地地下水流动会带走热量,不利于场地的热修复。但对于不饱和场地,地下水位上涨速度小于等于0.1 m·d−1时可以起到补水作用,提高场地升温速率。故对于地下水流速过高的场地应采取水力平衡或设置止水帷幕等工程措施以缓解热量流失。

  • 图 1  不同体系对NH+4PO34去除的影响

    Figure 1.  Effect of different systems on removal of NH+4 and PO34

    图 2  反应过程中N物种浓度变化

    Figure 2.  N species concentration changes during the reaction

    图 3  不同P()和Fe()物种在不同pH下的占比

    Figure 3.  Proportion of various P(Ⅴ) and Fe(Ⅲ) species at different pH

    图 4  沉淀物的表征图

    Figure 4.  Characterization of precipitates

    图 5  不同淬灭剂对NH+4去除的影响以及ESR图谱

    Figure 5.  Effect of different radical scavengers on removal of NH+4 and ESR spectra

    图 6  PMS投加量NH+4PO34去除的影响

    Figure 6.  Effect of PMS dosage on removal of NH+4 and PO34

    图 7  温度对NH+4PO34去除的影响

    Figure 7.  Effect of temperature on removal of NH+4 and PO34

    图 8  Fe2+/ClNH+4PO34去除的影响

    Figure 8.  Effect of Fe2+/Cl on removal of NH+4 and PO34

    图 9  pH对NH+4PO34去除的影响

    Figure 9.  Effect of pH on removal of NH+4 and PO34

    图 10  CO23NH+4PO34去除的影响

    Figure 10.  Effect of CO23 dosage on removal of NH+4 and PO34

    图 11  HA对NH+4PO34去除的影响

    Figure 11.  Effect of HA dosage on removal of NH+4 and PO34

  • [1] ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726. doi: 10.1007/BF02804901
    [2] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. doi: 10.1126/science.1167755
    [3] 金相灿. 湖泊富营养化控制和管理技术[M]. 北京: 化学工业出版社, 2001.
    [4] WARD M H, RUSIECKI J A, CANTOR L K P. Nitrate in public water supplied and the risk of renal cell carcinoma[J]. Cancer Causes & Control, 2007, 18(10): 1141-1151.
    [5] ZHANG Z Q, SHE L, ZHANG J, et al. Electrochemical acidolysis of magnesite to induce struvite crystallization for recovering phosphorus from aqueous solution[J]. Chemosphere, 2019, 226: 307-315. doi: 10.1016/j.chemosphere.2019.03.106
    [6] ANTAKYALI D, SCHMITZ S, KRAMPE J, et al. Nitrogen removal from municipal sewage sludge liquor through struvite precipitation for application in a mobile plant[J]. Journal of Residuals Science Technology, 2005, 2: 221-226.
    [7] KOCHANY J, LIPCZYNSKA-KOCHANY E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation: A comparative study[J]. Journal of Hazardous Material, 2009, 166(1): 248-254. doi: 10.1016/j.jhazmat.2008.11.017
    [8] SCHNEIDER M, DRENKOVA-TUHTAN A, SZCZERBA W, et al. Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: Understanding the role of different material-building-blocks[J]. Environmental Science-Nano, 2016, 4(1): 180-190.
    [9] ZHANG Z G, PAN S L, HUANG F, et al. Nitrogen and phosphorus removal by activated sludge process: A review[J]. Mini-Reviews in Organic Chemistry, 2017, 14(2): 99-106. doi: 10.2174/1570193X14666161130151411
    [10] RASHED E M, EL-SHAFEI M M, HEIKAL M A, et al. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR) in domestic wastewater[J]. HBRC Journal, 2014, 10(1): 92-99. doi: 10.1016/j.hbrcj.2013.08.008
    [11] FENG C P, SUGIURA N, SHIMADA S, et al. Development of a high performance electrochemical wastewater treatment system[J]. Journal of Hazardous Materials, 2003, 103(1/2): 65-78.
    [12] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7443.
    [13] DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571(15): 643-657.
    [14] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151(5): 178-188.
    [15] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
    [16] KURUKUTLA A B, KUMAR P S S, ANANDAN S, et al. Sonochemical degradation of rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion: Proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2): 129-140. doi: 10.1089/ees.2014.0328
    [17] 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3): 788-795. doi: 10.12030/j.cjee.201709118
    [18] JI Y Z, BAI J, LI J H, et al. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system[J]. Water Research, 2017, 125: 512-519. doi: 10.1016/j.watres.2017.08.053
    [19] VANLANGENDONCK Y, CORBISIER D, LIERDE A V, et al. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique)[J]. Water Research, 2005, 39(19): 3028-3034.
    [20] ZHANG J J, ZHAO X, WANG Y, et al. Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation[J]. Environmental Science & Technology, 2020, 54(2): 1204-1213.
    [21] SONG X, PAN Y, WU Q, et al. Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280(1/2/3): 384-390.
    [22] WANG M, YANG Y, ZHANG Y. Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density[J]. Nanoscale, 2011, 3(10): 4434-4439. doi: 10.1039/c1nr10950b
    [23] DONG B, LI G, YANG X, et al. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment[J]. Ultrasonics Sonochemistry, 2018, 42: 452-463. doi: 10.1016/j.ultsonch.2017.12.008
    [24] NAGARAJU P, SRILAKSHMI C, PASHA N, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-O catalysts[J]. Applied Catalysis A: General, 2007, 334(1/2): 10-19.
    [25] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(3): 1027-1284.
    [26] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [27] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
    [28] OLIVER B G, CAREY J H. Photochemical production of chlorinated organics in aqueous solutions containing chlorine[J]. Environmental Science & Technology, 1977, 11(9): 893-895.
    [29] MA J, MA W, SONG W, et al. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light[J]. Environmental Science & Technology, 2006, 40(2): 618-624.
    [30] 廖云燕, 刘国强, 赵力, 等. 利用热活化过硫酸盐技术去除阿特拉津[J]. 环境科学学报, 2014, 34(4): 931-937.
    [31] NIE M, YANG Y, ZHANG Z, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047
    [32] 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19.
    [33] RASTOGI A, AL-ABED S R, DIONYSIOU D D, et al. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179.
    [34] HUANG Y H, HUANG Y F, HUANG C I, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118.
    [35] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2016, 310: 41-62.
    [36] JI Y F, DONG C X, KONG D Y, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms[J]. Journal of Hazardous Materials, 2015, 285: 491-500. doi: 10.1016/j.jhazmat.2014.12.026
    [37] DENG L, SHI Z, ZOU Z, et al. Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of orange G[J]. Environmental Science & Pollution Research, 2017, 24(12): 1-13.
    [38] MA J, GRAHAM N J D. Degradation of atrazine by manganesecatalysed ozonation: Influence of humic substances[J]. Water Research, 1999, 33(3): 785-793. doi: 10.1016/S0043-1354(98)00266-8
    [39] WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulseradiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates[J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.5 %DOWNLOAD: 2.5 %HTML全文: 84.3 %HTML全文: 84.3 %摘要: 13.2 %摘要: 13.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 89.2 %其他: 89.2 %Beigao: 0.2 %Beigao: 0.2 %Beijing: 3.6 %Beijing: 3.6 %Boulder: 0.0 %Boulder: 0.0 %Central: 0.0 %Central: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Chanshan: 0.0 %Chanshan: 0.0 %Chaowai: 0.0 %Chaowai: 0.0 %Chengdu: 0.0 %Chengdu: 0.0 %Clifton: 0.1 %Clifton: 0.1 %Elâzığ: 0.1 %Elâzığ: 0.1 %Guangzhou: 0.0 %Guangzhou: 0.0 %Gulan: 0.0 %Gulan: 0.0 %Hangzhou: 0.1 %Hangzhou: 0.1 %Hefei: 0.0 %Hefei: 0.0 %Huangpu Qu: 0.0 %Huangpu Qu: 0.0 %Hyderabad: 0.0 %Hyderabad: 0.0 %Kunshan: 0.0 %Kunshan: 0.0 %Lanzhou: 0.1 %Lanzhou: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Naju: 0.1 %Naju: 0.1 %Nanchang: 0.0 %Nanchang: 0.0 %Nanjing: 0.0 %Nanjing: 0.0 %Paris: 0.1 %Paris: 0.1 %Qingdao: 0.0 %Qingdao: 0.0 %Qinnan: 0.1 %Qinnan: 0.1 %Quanzhou: 0.1 %Quanzhou: 0.1 %Shanghai: 0.2 %Shanghai: 0.2 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.1 %Shenzhen: 0.1 %Tehran: 0.1 %Tehran: 0.1 %The Bronx: 0.0 %The Bronx: 0.0 %Xiangtan: 0.0 %Xiangtan: 0.0 %Xiaoyouying: 0.0 %Xiaoyouying: 0.0 %XX: 4.1 %XX: 4.1 %Yancheng: 0.0 %Yancheng: 0.0 %Yuncheng: 0.1 %Yuncheng: 0.1 %Yuzhong Chengguanzhen: 0.0 %Yuzhong Chengguanzhen: 0.0 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %北京: 0.5 %北京: 0.5 %太原: 0.0 %太原: 0.0 %杭州: 0.0 %杭州: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 0.0 %深圳: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.1 %衢州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他BeigaoBeijingBoulderCentralChang'anChangshaChanshanChaowaiChengduCliftonElâzığGuangzhouGulanHangzhouHefeiHuangpu QuHyderabadKunshanLanzhouMountain ViewNajuNanchangNanjingParisQingdaoQinnanQuanzhouShanghaiShenyangShenzhenTehranThe BronxXiangtanXiaoyouyingXXYanchengYunchengYuzhong ChengguanzhenZhengzhou北京太原杭州济南深圳衡水衢州阳泉Highcharts.com
图( 11)
计量
  • 文章访问数:  8123
  • HTML全文浏览数:  8123
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-10
  • 录用日期:  2020-07-29
  • 刊出日期:  2020-09-10
郭聪慧, 李一兵, 张娟娟, 郝经纬, 孙拓, 石永, 林松, 赵旭. 氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收[J]. 环境工程学报, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
引用本文: 郭聪慧, 李一兵, 张娟娟, 郝经纬, 孙拓, 石永, 林松, 赵旭. 氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收[J]. 环境工程学报, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
GUO Conghui, LI Yibing, ZHANG Juanjuan, HAO Jingwei, SUN Tuo, SHI Yong, LIN Song, ZHAO Xu. Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069
Citation: GUO Conghui, LI Yibing, ZHANG Juanjuan, HAO Jingwei, SUN Tuo, SHI Yong, LIN Song, ZHAO Xu. Simultaneous removal of nitrogen and phosphorus by ferrous chloride activated peroxymonosulfate and recovery of phosphorus[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2416-2427. doi: 10.12030/j.cjee.202007069

氯化亚铁活化过一硫酸盐同步去除氮磷及磷的回收

    通讯作者: 赵旭(1976—),男,博士,研究员。研究方向:环境电化学等。E-mail:zhaoxu@rcees.ac.cn
    作者简介: 郭聪慧(1995—),女,硕士研究生。研究方向:高级氧化技术。E-mail:1939512099@qq.com
  • 1. 河北工业大学土木与交通学院,天津 300401
  • 2. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 3. 贵州水务股份有限公司,贵阳 550000
  • 4. 贵州水务运营有限公司,贵阳 550000
基金项目:
国家自然科学基金资助项目(21777176);贵州省科技支撑计划项目(黔科合支撑[2019]2848号);观山湖区科技计划项目(观科合同[2018]16号)

摘要: 采用氯化亚铁(FeCl2)活化过一硫酸盐(PMS)产生硫酸根自由基(SO4)和氯自由基(Cl·),实现了水中NH+4PO34的同步无害化去除及磷的回收。研究了Fe2+/PMS/Cl体系中的反应机制,考察了PMS浓度、Fe2+/Cl、溶液pH、温度、溶液共存CO23浓度及腐殖酸(HA)浓度等条件对反应体系的影响。结果表明:当溶液pH为4.0、PMS投加量为20 mmol·L−1、Fe2+/Cl摩尔分数为1/12时,反应30 min后,溶液中的NH+4去除率高达100%且以氮气(N2)形式实现NH+4无害化去除;PO34的去除率也高达100%且以磷酸铁(FePO4)沉淀形式被回收;随着PMS浓度、Fe2+/Cl以及温度的升高,Fe2+/PMS/Cl体系中,NH+4去除率逐渐增大,但对PO34的回收无明显影响;溶液中CO23和HA的存在对NH+4去除有抑制作用。通过自由基淬灭实验和ESR分析证明,SO4和Cl·在Fe2+/PMS/Cl体系中起主要作用。本研究结果可为氮磷废水的处理及磷回收提供参考。

English Abstract

  • 工业废水中的氮、磷如果处理不当或直接排放,会导致水体富营养化,威胁生态系统的安全[1-3]。工业废水中的氨氮(NH+4-N)转换成硝态氮(NO3-N)或亚硝态氮(NO2-N)后,毒性会更大,对水生生物的生存造成威胁,并可能危害人类健康[4]。磷广泛应用于工农业,但在自然界中,单向循环导致磷的不可再生性,未来将面临着严重的磷短缺[5]。因此,废水中氮的无害化去除,同时实现磷资源的回收是当前工业废水处理中的热点。

    工业废水领域常用的对氮、磷的处理方法有结晶法[6-7]、吸附法[8]、生物法[9-10]以及化学沉淀法[11]等。依靠单一的沉淀法或者氧化法,很难实现废水同时脱氮除磷。近年来,以过一硫酸盐(peroxymonosulfate,PMS)为基础的高级氧化工艺(advanced oxidation process,AOPs)处理废水中难降解污染物的研究受到关注[12]。利用超声波、紫外线辐射、加热、金属离子或金属氧化剂和非金属催化剂等方法,可有效活化PMS,并产生多种活性自由基[13-15]。亚铁离子(Fe2+)可以有效活化PMS产生活性物种,实现罗丹明B的高效降解[16]。另外,研究者还发现活化PMS产生的SO4可以进一步将水中Cl氧化成为氯自由基(Cl·)[17]。而污水中的NH+4在Cl·作用下可转化成氮气(N2),实现无害化去除[18]

    本研究以NH+4PO34为目标污染物,通过向溶液中投加FeCl2和PMS,将废水中的NH+4选择性氧化成N2,以实现NH+4的无害化去除,同时生成的Fe3+在一定条件下与PO34可生成磷酸铁(FePO4)沉淀实现磷的回收;为详细探讨NH+4PO34同步去除及磷回收的过程机制,进一步考察PMS初始浓度、Fe2+/Cl比、pH、共存CO23和HA等多种因素对反应效果的影响,以期为工业废水中氮、磷的处理与资源化利用提供参考。

  • 硫酸铵((NH4)2SO4)、磷酸二氢钾(KH2PO4)、氯化亚铁(FeCl2)、氯化钠(NaCl)、甲醇(CH4O)、叔丁醇(C4H10O)、硝基苯(C6H5NO2)、硫酸(H2SO4)、氢氧化钠(NaOH)、碳酸钠(Na2CO3)和腐殖酸(HA)购自国药集团化学有限公司。过一硫酸盐(2KHSO5·KHSO4·K2SO4,PMS)购自Sigma-Aldrich西格玛奥德里奥奇(上海)贸易有限公司。5,5-二甲基-1-氧化吡咯啉(DMPO)购自东仁化学科技(上海)有限公司。药品均为分析纯,实验用水为超纯水。

  • 反应体积250 mL。溶液中NH+4(以N计)和PO34(以P计)初始浓度为10 mg·L−1。反应开始前,加入定量的PMS和NaCl,溶液pH用H2SO4或NaOH调节并保持恒定;在磁力搅拌器上持续搅拌(300 r·min−1),加入FeCl2启动反应;分别在0、5、10、15和30 min进行取样;样品经过0.22 μm的滤膜后,采用紫外可见分光光度计进行分析NH+4PO34的残余浓度。实验过程中,pH用稀H2SO4或稀NaOH保持恒定。反应时需用水浴锅保持溶液恒温,除考察温度影响外,其他体系温度均在室温(25±3) ℃下进行。

    在以上反应体系中,分别考察了PMS浓度(0、5、10、15、20 mmol·L−1)、Fe2+/Cl(0、1/82、1/42、1/22、1/15、1/12)、pH(2、4、6、8、10、12)、温度(20、30、40、50、60 ℃)、Na2CO3浓度(0、1、3、5 mmol·L−1)和HA浓度(0、5、10、20 mg·L−1)对NH+4PO34去除的影响。

    在进行自由基淬灭时,分别加入0.1或4 mmol·L−1甲醇作为SO4和·OH淬灭剂;0.1或4 mmol·L−1叔丁醇作为·OH和Cl·淬灭剂;0.1或4 mmol·L−1硝基苯作为·OH淬灭剂。在相同的实验条件下,测定NH+4浓度的变化来确定其去除情况。

  • 溶液中剩余NH+4浓度采用国标纳氏试剂分光光度法测定;剩余PO34浓度采用国标钼酸铵分光光度法测定。溶液的pH用pH计(PHS-3C,上海雷磁仪器厂)进行检测。自由基的测定采用电子自旋共振仪(ESR,Bruker A300-10/12,德国)完成。沉淀物形貌采用场发射扫描电子显微镜(SEM,SU-8020,日本日立有限公司)进行表征。晶体结构通过X射线衍射(XRD,X/Pert Pro MPD,帕纳科分析仪器有限公司,荷兰)进行表征。傅里叶变换红外光谱(FT-IR)采用Nicolet 5700型光谱仪进行测试。

  • 图1显示了不同反应体系中NH+4PO34的去除效果。反应30 min时,单独投加PMS和单独投加H2O2NH+4的去除率约为7.5%,PO34没有得到去除。单独投加FeCl2可将PO34全部去除,但NH+4基本没有去除;在FeCl2/H2O2体系和FeCl2/PMS体系中,PO34的去除率均可达到100%,但NH+4的去除率仅有19.9%和23%。为保证体系中Cl量充足,在FeCl2/PMS体系中额外投加NaCl,形成Fe2+/PMS/Cl体系后,NH+4PO34的去除率可达到100%。另外,在PO34去除效果明显的体系中,如单独投加FeCl2、FeCl2/H2O2体系、FeCl2/PMS体系以及Fe2+/PMS/Cl体系。溶液中均产生了沉淀物。分析原因,可能是由于这些体系中存在的二价铁或三价铁能与PO34发生反应,生成沉淀。

    为研究Fe2+/PMS/Cl体系中NH+4的去除情况,对反应过程中的氮平衡进行了分析(图2)。随着反应的进行,溶液中的NO2NO3均未检测到。而其中的NH+4和总氮(TN)均随时间不断减少,且二者量基本保持一致。已有文献报道,Fe2+活化PMS产生SO4[16]SO4可进一步将Cl氧化成为Cl·[17];而在酸性条件下,NH+4受Cl·作用可转化成N2,实现无害化去除[18-19]

    溶液pH是影响三价铁和正磷生成不同类型沉淀的主要影响因素[20]。由环境水化学平衡软件Visual MINTEQ模拟分析(图3)可知,当溶液pH不同时,三价铁和正磷在溶液中的存在形态也不同。当溶液pH为2~7时,正磷在溶液中主要以H2PO4存在;当溶液pH为2.4~4.3时,三价铁在溶液中主要以Fe(OH)2+存在。当H2PO4与Fe(OH)2+发生沉淀反应,结合形成(Fe(OH)2+)(H2PO4),该物质脱水后可生成FePO4沉淀物。而当溶液pH大于4.3时,溶液中的三价铁形成Fe(OH)3进而析出,影响FePO4沉淀物的形成。

    为进一步探究Fe2+/PMS/Cl体系中沉淀产物的组成,采用XRD、SEM以及FT-IR等手段对沉淀产物进行了表征(溶液pH为4、反应30 min后生成的沉淀物),结果如图4所示。XRD结果表明,测试结果中的衍射峰符合FePO4的结构,符合JCPDS(No. 30-0659)标准卡片[21];同时,SEM显示出沉淀物高度团聚,呈近似椭圆形或球形,与FePO4的特征形貌一致[22]。FTIR结果显示,1 000 cm−1PO34基团不对称的弯曲振动峰[23],而在1 642 cm−1和3 371 cm−1处的峰分别对应水分子中H—O—H和O—H基团的弯曲振动[24]。这说明在Fe2+/PMS/Cl体系中,当溶液pH为4时,反应30 min后生成的沉淀物为FePO4,故PO34最终以FePO4形式被回收。

    以上结果表明,在Fe2+/PMS/Cl体系中,当溶液pH为4,反应30 min后,溶液中的NH+4几乎全部转化成N2,实现无害化去除。溶液中的PO34则最终可以生成FePO4沉淀被全部回收。

  • 为进一步确定该体系的反应机理,向溶液中分别加入甲醇(MeOH)、叔丁醇(TBA)和硝基苯(NB) 3种自由基淬灭剂,通过观察对NH+4去除效果的影响来判定体系中主要存在的有效自由基。MeOH可淬灭SO4(kSO4=1.6×109 mol·(L·s)‒1)和·OH(k·OH=1.9×109 mol·(L·s)‒1);TBA可淬灭·OH(k ·OH=6×108 mol·(L·s)‒1)和Cl·(k Cl·=3×108 mol·(L·s)‒1);NB可淬灭·OH(k·OH=3.9×109 mol·(L·s)‒1)[25]。如图5(a)~图5(c)所示,当在体系中加入4 mmol·L−1 MeOH时,溶液中的NH+4基本没有被去除;加入4 mmol·L−1 TBA时,NH+4的去除率下降到14.3%;而加入4 mmol·L−1NB时,NH+4的去除受到较小的抑制作用。这是由于当体系中SO4·被淬灭后,Cl无法被氧化为Cl·,NH+4也并不能得到有效去除;当体系中的Cl·被淬灭后,NH+4的去除受到影响;而·OH被淬灭时,NH+4的去除影响较小。同时,在反应过程中生成的Fe3+PO34发生反应,生成FePO4沉淀实现磷回收。由此可知,SO4和Cl·在Fe2+/PMS/Cl体系中实现NH+4PO34的同步无害化去除及磷回收中起到重要作用。反应机理[18, 26-28]如式(1)~式(12)。

    采用ESR进一步测定体系中的自由基,实验过程中以DMPO为捕获剂,对体系中产生的自由基进行捕获。由图5(d)可知,体系中出现了DMPO-SO4和DMPO-·OH加合物的典型特征峰[29]。该结果证实,在Fe2+/PMS/Cl体系中产生了SO4和·OH。

  • 体系中的PMS浓度会影响SO4·的产生量,进而影响NH+4的去除速率和PO34的回收率。图6显示了不同PMS投加量对NH+4去除以及PO34回收情况的影响。当PMS浓度为5 mmol·L−1时,反应30 min时即可将PO34全部去除,但此时NH+4的去除率仅有31.7%。分析其原因,是因为此时体系中产生的SO4较少,导致SO4氧化Cl产生的Cl·量较少,无法充分氧化NH+4。随着PMS浓度的增加,SO4的产量逐渐增大,NH+4的去除率逐渐提高。当PMS的浓度为20 mmol·L−1时,可实现溶液中NH+4PO34的全部同步无害化去除及磷的回收。

  • 考察了温度为20~60 ℃,NH+4PO34的去除情况,结果如图7所示。随着温度的升高,去除显著加快。当温度升至60 ℃时,NH+4可在10 min内去除。分析原因可能有:一方面,温度的升高增加了PMS的活化效率,增加了体系中活性自由基的产生量[26];另一方面,反应速率也随着温度的升高而变大[30]

  • 不同Fe2+/Cl对SO4·的产生起着非常重要的作用。为研究不同Fe2+/Cl对反应过程的影响,选取Fe2+/Cl分别为0、1/82、1/42、1/22、1/15、1/12,结果如图8所示。随着Fe2+/Cl的增大,NH+4的去除率和PO34的回收率逐渐提高。当Fe2+/Cl为1/22,PO34基本完全回收,但此时NH+4的去除率只有47.8%。这主要是由于此时溶液中Fe2+浓度较低,产生的自由基较少[31],不足以将NH+4氧化。当Fe2+/Cl增加到1/12时,NH+4的去除率可达到为100%。这可能是由于,当增加体系中的FeCl2时,体系中SO4和Cl·的产量也随之增加,促使NH+4的去除率逐渐提高。

  • 不同pH对NH+4PO34去除效果的影响如图9所示。当pH为4时,溶液中的NH+4PO34基本上可以完全去除和回收。当pH过高或过低时,NH+4的去除和PO34的回收都会受到影响。这是由于溶液中PMS在强酸条件下主要以H2SO5的形式存在,SO4·不能有效生成[32]。在pH为8和10的偏碱性环境时,NH+4的去除率降低。这可能是由于Fe2+转化成Fe3+,生成沉淀导致催化剂减少[33]HSO5发生了非自由基途径的自分解[33]。而当pH升高到12时,NH+4的去除率反而较pH为8和10的情况有所提高。这是由于在此时的强碱环境下,NH+4的主要存在形式为氨气;氨气从溶液中溢出,导致NH+4的去除率有所提高。当pH为2时,PO34的回收率较低的原因可能有:1)生成的磷酸铁沉淀有一部分溶解到溶液中,使其不能生成沉淀去除;2)溶液中的H+可以与SO4·和·OH反应,消耗体系中的自由基,反应[34]见式(13)~式(14);3)可能生成了(Fe(Ⅱ)(H2O))2+,导致游离的Fe2+减少[35]。当pH过高时,由于水中存在大量的OH,而且氢氧化铁的溶度积(4×10−36)远小于磷酸铁(9.91×10−16)的溶度积,所以会优先生成氢氧化铁沉淀,导致PO34仍存在于溶液中。

  • 由于水体中存在着各种无机阴离子,而本研究的反应过程中存在PO34与Cl,所以考察了水中共存的CO23对反应的影响,即Fe2+/PMS/Cl体系在水中含CO23的情况下,以及CO23浓度发生变化时对NH+4PO34去除的影响。由图10可知,CO23的加入及浓度变化对PO34的去除基本没有影响,而对NH+4的去除有明显影响;当溶液中不存在CO23时,溶液中NH+4可完全去除;当CO23的投加量为1、3、5 mmol·L−1时,NH+4的去除率分别为76.8%、73.6%、63.9%。分析原因可能有:1) CO23在溶液中可部分水解成HCO3,这2种离子会与SO4发生副反应,如式(15)~式(17)所示,减少了SO4的有效浓度[36];2) CO23可以与·OH发生反应[25](式(18)),进而影响了NH+4的去除。

  • 腐殖酸(humic acid,HA)是一种广泛存在于地表水和土壤中的天然有机质(natural organic matter,NOM),对水处理过程影响较大[37]。因此,考察了初始HA浓度为0、5、10、20 mg·L−1,对体系的NH+4PO34处理效果影响,结果如图11所示。随着HA浓度的增加,NH+4的去除受到一定影响,PO34的去除并没有受到影响。这可能是由于,HA作为一种大分子有机物质,可以和NH+4竞争溶液中的自由基[38-39],导致体系中NH+4的去除受到抑制,且这种影响随HA含量的增加而增加。

  • 1)采用Fe2+/PMS/Cl体系实现了NH+4PO34的同步无害化去除并回收磷,结果证明NH+4以N2的形式无害化去除,PO34以FePO4沉淀的形式得到资源化回收。自由基淬灭实验和ESR证明,该体系中产生了·OH、SO4和Cl·,而SO4和Cl·在反应中起主要作用。

    2) NH+4的去除率随PMS浓度、Fe2+/Cl、温度的提高而得到增加,PO34的回收几乎不受影响。溶液pH对实验的影响比较显著,强酸强碱不利于NH+4的去除和PO34的回收。

    3)水中共存CO23和HA对NH+4的去除有不利影响,而对PO34回收无明显影响。

参考文献 (39)

返回顶部

目录

/

返回文章
返回