-
剩余污泥是污水生物处理的主要副产物,其产生量约为所处理COD总量的0.4~0.5倍,即降解1 kg COD可合成0.4~0.5 kg剩余污泥,产量巨大。根据2017年数据,我国城市剩余污泥产量已达2.95×107 t[1]。剩余污泥成分复杂[2],如未妥善处理处置将严重影响生态环境。传统剩余污泥处理处置方法(如焚烧、填埋等末端治理方法)不仅耗资巨大(占污水处理厂运行费用的25%~60%)[3],还面临一系列政策、环境和技术问题。因此,解决污泥问题的关键不仅应优化并发展剩余污泥处理处置技术(末端处理),还应结合污泥原位减量工艺(过程处理)对其进行综合整治。
污泥原位减量工艺是在保证出水达标前提下,促进微生物降解有机物产能用于热逸散,而非增殖的一种污水处理技术[4]。国内外学者对此进行了广泛的尝试,并取得了一系列有意义的成果。如:基于能量解耦联理论的OSA系列工艺[5-6];基于内源衰减及程序化死亡机理的低F/M(基质/微生物)及长SRT(污泥龄)系列工艺[7-8];基于溶胞-隐性增长原理的污泥化学/物理/生物原位破解系列工艺等[9-10]。这类工艺的作用机制、内部驱动力各异,但其处理方式均是通过内嵌物化法、机械法和生物法等影响微生物新陈代谢过程,进而降低剩余污泥表观产率。已有学者[11-12]详细报道了物化法、机械法和生物法及基于这3种方法的工程/技术工艺,但并未系统归纳污泥原位减量技术的运行机理及内部驱动机制。本文以微生物新陈代谢途径为主线,分析了减量技术对微生物生长过程、衰减过程及水解过程的干涉及影响,探讨了污泥原位减量技术的驱动原理,归纳了减量技术的不足及其对污水处理的影响,展望了污泥原位减量技术的应用前景,以期为科学构建并改良低污泥产率污水生物处理技术提供参考。
基于微生物新陈代谢过程的污泥原位减量技术进展
State of the art of in-situ sludge reduction technology based on microbial metabolic process
-
摘要: 解决剩余污泥问题的关键是将污泥原位减量技术(过程处理)与剩余污泥处理处置技术(末端处理)相结合,对污泥实施联合处理。污泥原位减量技术是在保证出水达标的前提下,尽量促进微生物降解有机物产能用于热逸散而非增殖的一种污水处理技术,其(非生物捕食)主要通过溶胞-隐性生长、解耦联代谢和维持代谢等方式影响污泥中微生物的增殖、衰亡和水解,进而降低剩余污泥产量。为系统了解当前污泥减量技术的驱动机制及关键问题,在分析污泥增殖和微生物新陈代谢途径的基础上,梳理了减量技术对微生物生长(电子受体、代谢解偶联及维持能)、衰减(饥饿、噬菌体、温度、辐射、极端环境及生物抗性)及水解(水解及水解强化)的影响机制及内部驱动,明确了基于微生物代谢过程的减量技术的不足及其对污水处理效果的影响;在总结各类原位减量技术利弊的基础上,展望了污泥原位减量技术的应用前景。Abstract: The in-situ sludge reduction technology (process treatment) combined with the excess sludge treatment and disposal technology (end treatment) is the key to solving the sludge problem. The in-situ sludge reduction technology is a sewage treatment technology that promotes microbial degradation of organic matter as much as possible for heat dissipation rather than growth under the premise of ensuring that the effluent meets the standard. It (non-biological predation) mainly uses lysing-recessive growth, decoupling metabolism, and maintenance metabolism affect the proliferation, decay, and hydrolysis of microorganisms in the sludge, thereby inhibiting sludge proliferation and reduce the sludge production. In order to systematically learn about the driving mechanism and key problems for current sludge volume reduction technologies, based on the systematic analysis of sludge proliferation and the microbial metabolism pathways, the impact mechanism and internal driving of the reduction technologies on the microbial growth (electronic balance, metabolic uncoupling and maintenance energy), attenuation (hunger, phage, temperature, radiation, extreme environment and bio-resistance) and hydrolysis (hydrolysis and hydrolysis-enhancement) process were combed, and the deficiencies of reduction technologies based on microbial metabolic process and their impacts on wastewater treatment were clarified. Then various types of in-situ reduction based on the pros and cons of technology were summarized, the application prospects of sludge in-situ reduction technologies are prospected.
-
Key words:
- sludge reduction /
- sludge growth /
- sludge decay /
- sludge hydrolysis
-
表 1 微生物原位生长影响因素
Table 1. Effects factor of in-situ growth of microbial in sludge
微生物代谢阶段 干涉点 影响方法或过程 微生物生长 电子受体 有氧呼吸,无氧呼吸,发酵 代谢解偶联 解耦联剂,改变初始底物浓度/初始微生物浓度比(S0/X0, COD/ MLSS)及改变微生物营养/饥饿时序均会影响微生物正常的能量耦联效应 维持能 微生物 (F/M) 比、NaCl、金属抑制 微生物衰减 饥饿 诱发群体效应,导致部分细菌程序性细胞死亡 噬菌体 噬菌体感染是调节污水生物处理系统微生物凋亡的重要因素 温度 较高温度下运行,活性污泥微生物最大增长率降低,污泥衰减率提高 辐射 各类辐射均能对微生物的衰减造成一定影响 极端环境 极端环境易导致细胞溶解、死亡 生物抗性 不同微生物对环境压力的抗性不同,其存活时间亦各异 污泥水解 污泥水解 位于细胞膜表面及EPS内的胞外酶,可水解污泥中难降解颗粒 水解强化 通过物理、化学或生物方法,将絮体或细胞破坏,使内容物流出,提高可水解性 表 2 污泥原位减量技术及其效果
Table 2. Methods and the effects of in-situ sludge reduction
工艺 干涉过程 减量方式 减量效果 规模 影响 来源 SBR 生长 添加解偶联剂-pCP 减量率为0~60% 小试 氨氮去除率降低 [32] SBR 生长 添加解偶联剂-oCP 减量率为0~57.8% 小试 氨氮去除率降低 [32] SBR 生长 添加解偶联剂-oNP 减量率为0~80% 小试 氨氮去除率降低 [32] SBR 生长 添加解偶联剂-TCS 减量率为16.98% 小试 SVI增高 [34] SBR 生长 添加解偶联剂-DCP 减量率为17.55% 小试 SVI增高 [34] SBR 生长 添加解偶联剂-THPS 减量率为17.04% 小试 SVI增高 [34] OSA 生长 高S0/X0 (0.5~8) 减量率为0~91% 小试 实际应用少 [37] OSA 生长 高S0/X0 (1~17) 减量率为0~61% 小试 实际应用少 [104] MBR 生长 MBR-OSA 减量率为14%~33% 小试 除磷不稳定 [48] MBR 生长 MBR-OSA 减量率为20%~55% 小试 除磷不稳定(与ORP相关) [49] EBPR SBR 生长 EBPR SBR-厌氧 SSR 减量率为16%~33% 小试 除磷效率较高 [105] SBR 生长 缺氧 减量率为26% 小试 对C/N要求较高 [20] SBR 生长 缺氧 减量率为17% 小试 对C/N要求较高 [21] CSTR 生长 厌氧 Yobs为0.07 g·g−1 小试 出水营养物质高 [106] CSTR 生长 厌氧 Yobs为0.188 g·g−1 中试 出水营养物质高 [107] UASB 生长 厌氧 Yobs为0.004 g·g−1 中试 出水营养物质高 [108] SAF 生长 厌氧 Yobs为0.046~0.056 g·g−1 中试 出水营养物质高 [109] 批实验 生长 投加重金属 Yh值降低0~33% 小试 出水中含重金属 [74] 批实验 生长 投加重金属 Yh值降低0~55% 小试 出水中含重金属 [75] CMAS 生长 投加重金属 Yh值降低0~44% 小试 出水中含重金属 [76] 批试验 生长及衰减 延长SRT 减量率为26% 小试 易引起其他问题 [55] MBR 生长及衰减 延长SRT 泥龄300 d,污泥产率0.024, 小试 易引起其他问题 [57] MBR 生长及衰减 延长SRT 污泥产率为0,维持150 d 小试 易引起其他问题 [56] MBR 溶胞与隐形生长 臭氧氧化破解污泥 减量率为52% 小试 氮及COD去除率下降 [98] MBR 溶胞与隐形生长 臭氧氧化破解污泥 减量率为54% 小试 氮去除率升高 [110] MBR 溶胞与隐形生长 NaOH-臭氧联合破解污泥 污泥产率为0,运行200 d 小试 无影响 [99] MBR 溶胞与隐形生长 Fenton氧化破解污泥 减量率为95% 小试 氮去除率升高 [12] AO-MBR 溶胞与隐形生长 热化学破解污泥 减量率为24%~33% 小试 无影响 [111] A2O-MBR-TAD 溶胞与隐形生长 热破解污泥 污泥产率为0,运行600 d左右 小试 无影响 [100] MBR 溶胞与隐形生长 超声破解污泥 污泥产率为0,运行38 d左右 小试 无影响 [112] SBR 溶胞与隐形生长 溶菌酶破解污泥 减量率为76% 小试 除磷率降低 [103] SBR 溶胞与隐形生长 ClO2破解污泥 减量率为58% 小试 除磷率降低 [3] MBR 溶胞与隐形生长 Cl2破解污泥 减量率为65% 小试 SVI上升,COD去除率下降 [49] CAS 溶胞与隐形生长 微波-碱破解污泥 减量率为29.1%~40.9% 工程 无影响 [113] 表 3 污泥原位减量效果比较
Table 3. Effect comparison for in-situ sludge reduction
过程 机理 技术 优势 劣势 减少率/% 生长过程 解耦联 OSA 工艺简单、耗能低、
无环境危害增设OSA池,一次投入高 14~55[48,49] 解耦联 解耦联药剂 工艺简单、环境危害小 长期运行可能会导致污泥选择性生长 0~60[32-34] 解耦联 高S0/X0 能耗低、环境危害小 局限较多 61~91[37,104] 生物抑制等 重金属 适用某些特殊废水 易造成环境污染、长期运行
导致污泥选择性生长0~55[73,75] 维持能增加 长SRT、低F/M 工艺简单 局限性 26~100[55-57] 降低异化产能 改变电子受体 工艺简单 局限性 17~26[20-21] 衰亡过程 饥饿 OSA、长SRT、
低F/M等工艺简单 处理速率慢 26~100[55-57] 隐形生长
过程热、微波、超声等 物理预处理 高效、高速 高能耗 24~100[100,112] NaOH、高级氧化等 化学预处理 减量效果较好 可能引起二次污染 22~95[3,9,98-99] 溶菌酶等 生物预处理 减量效果较好,
提高脱氮效率成本高,稳定性待验证 76[103] -
[1] 国家统计局城市社会经济调查司. 中国城市建设统计年鉴[M]. 北京: 中国统计出版社, 2018. [2] 金文标, 王建芳, 赵庆良, 等. 好氧-沉淀-厌氧工艺剩余污泥减量性能和机理研究[J]. 环境科学, 2008, 29(3): 726-732. doi: 10.3321/j.issn:0250-3301.2008.03.031 [3] WANG G, SUI J, SHEN H, et al. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation[J]. Journal of Hazardous Materials, 2011, 192(1): 93-98. [4] 冯权, 邢新会, 刘则华. 以剩余污泥减量化为目标的废水生物处理技术研究进展[J]. 化工进展, 2004, 23(8): 832-836. doi: 10.3321/j.issn:1000-6613.2004.08.007 [5] 宁欣强, 乔文文, 张蕾, 等. 基于磷脂脂肪酸法分析A+OSA污泥减量工艺微生物群落结构[J]. 环境工程学报, 2015, 9(10): 5024-5030. [6] KHURSHEED A, SHARMA M K, TYAGI V K, et al. Specific oxygen uptake rate gradient: Another possible cause of excess sludge reduction in oxic-settling-anaerobic (OSA) process[J]. Chemical Engineering Journal, 2015, 281: 613-622. doi: 10.1016/j.cej.2015.06.105 [7] WANG Y, LI Y, WU G. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process[J]. Environmental Technology Letters, 2017, 38(3): 305-315. doi: 10.1080/09593330.2016.1192223 [8] LOBOS J, WISNIEWSKI C, HERAN M, et al. Effects of starvation conditions on biomass behaviour for minimization of sludge production in membrane bioreactors[J]. Water Science & Technology, 2005, 51(6/7): 35-44. [9] HE M H, WEI C H. Performance of membrane bioreactor (MBR) system with sludge Fenton oxidation process for minimization of excess sludge production[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 597-601. [10] MA H, ZHANG S, LU X, et al. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment[J]. Bioresource Technology, 2012, 116: 441-447. doi: 10.1016/j.biortech.2012.03.091 [11] WEI Y, VAN HOUTEN R T, BORGER A R, et al. Minimization of excess sludge production for biological wastewater treatment[J]. Water Research, 2003, 37(18): 4453-4467. doi: 10.1016/S0043-1354(03)00441-X [12] GUO J S, FANG F, YAN P, et al. Sludge reduction based on microbial metabolism for sustainable wastewater treatment[J]. Bioresource Technology, 2019, 297: 122506. [13] HAN H, HEMP J, PACE L A, et al. Adaptation of aerobic respiration to low O2 environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14109-14114. doi: 10.1073/pnas.1018958108 [14] WEIJERS S R, VANROLLEGHEM P A. A procedure for selecting best identifiable parameters in calibrating activated sludge model No. 1 to full-scale plant data[J]. Water Science & Technology, 1997, 36(5): 69-79. [15] 李颖, 文莹, 关国华, 等. 微生物生理学[M]. 北京: 科学出版社, 2009. [16] ORHON D, SÖZEN S, ARTAN N. The effect of heterotrophic yield on the assessment of the correction factor for anoxic growth[J]. Water Science and Technology, 1996, 34(5/6): 67-74. [17] RUSSELL J B, COOK G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbiology and Molecular Biology Reviews, 1995, 59(1): 48-62. [18] MCCARTY P L. Energetics of organic matter degradation[M]//MITCHELL R. Water Pollution Microbiology. New York, NY, USA, Wiley, 1972. [19] MCCARTY P L. Stoichiometry of biological reactions[J]. Progress in Water Technology, 1975, 7(1): 157-172. [20] KUBA T, SMOLDERS G J F, VAN LOOSDRECHT M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science & Technology, 1993, 27(5/6): 241-252. [21] SPERANDIO M, URBAINV, AUDIC J M, et al. Use of carbon dioxide evolution rate for determining heterotrophic yield and characterising denitrifying biomass[J]. Water Science & Technology, 1999, 39(1): 139-146. [22] 冯芬, 杨恬然, 陈萍, 等. 化能异养微生物呼吸与发酵比较[J]. 生物学杂志, 2016(5): 83-86. doi: 10.3969/j.issn.2095-1736.2016.05.083 [23] MIKLÓS M, MENTEL M, HELLEMOND J J V, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes[J]. Microbiology & Molecular Biology Reviews, 2012, 76(2): 444-95. [24] EKAMA G, WENTZEL M. Biological Wastewater Treatment Principles, Modelling and Design[M]. Glasgow: IWA Publishing, 2008. [25] 李亚新. 活性污泥法理论与技术[M]. 北京: 中国建筑工业出版社, 2007. [26] MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism[J]. Nature, 1961, 191(4784): 144-148. doi: 10.1038/191144a0 [27] LIU Y, TAY J. Strategy for minimization of excess sludge production from the activated sludge process[J]. Biotechnology Advances, 2001, 19(2): 97-107. doi: 10.1016/S0734-9750(00)00066-5 [28] OlSCHEWSKI A, PAPP R, NAGARAJ C, et al. Ion channels and transporters as therapeutic targets in the pulmonary circulation[J]. Pharmacology & Therapeutics, 2014, 144(3): 349-368. [29] HALSEY C M, BENHAM D A, JIJIR D, et al. Influence of the lipid environment on valinomycin structure and cation complex formation[J]. Spectrochimica Acta, 2012, 96: 200-206. doi: 10.1016/j.saa.2012.05.022 [30] TERADA H. Uncouplers of oxidative phosphorylation[J]. Environmental Health Perspectives, 1990, 87(1): 213-218. [31] GOSTOMSKI P A, VELA R J D. Metabolic uncouplers for controlling biomass accumulation in biological waste treatment systems[J]. Reviews in Environmental Science and Bio/Technology, 2017, 17(1): 1-18. [32] FANG F, HU H L, QIN M M, et al. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge[J]. Bioresource Technology, 2015, 185: 1-6. doi: 10.1016/j.biortech.2015.02.054 [33] XIAO B, LI H, YAN H, et al. Evaluation of the sludge reduction effectiveness of a metabolic uncoupler-tetrakis (hydroxymethyl) phosphonium sulfate in anaerobic/anoxic/oxic process[J]. Desalination & Water Treatment, 2016, 57(13): 5772-5780. [34] LI P, LI H, LI J, et al. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process[J]. Bioresource Technology, 2016, 221: 31-36. doi: 10.1016/j.biortech.2016.09.019 [35] PAVEL P. Biodegradability of Organic Substances in the Aquatic Environment[M]. Boca Raton, CRC Press, 1990. [36] CHUDOBA P, CAPDEVILLE B, CHUDOBA J. Explanation of biological meaning of the So/Xo ratio in batch cultivation[J]. IWA Publishing, 1992, 26(5): 743-751. [37] LIU Y, CHEN G H, PAUL E. Effect of the So/Xo ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge[J]. Water Research, 1998, 32(10): 2883-2888. doi: 10.1016/S0043-1354(98)00071-2 [38] RUSSELL J B, COOK G M. Energetics of bacterial growth: Balance of anabolic and catabolic reactions[J]. Microbiological Reviews, 1995, 59(1): 48-62. doi: 10.1128/MMBR.59.1.48-62.1995 [39] COOK G M, RUSSELL J B. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance[J]. Applied and Environmental Microbiology, 1994, 60(6): 1942-1948. doi: 10.1128/AEM.60.6.1942-1948.1994 [40] RUSSELL J. Energy-Yielding and Energy-Consuming Reactions[M]. The Rumen Microbial Ecosystem. Berlin, Springer Netherlands, 1997. [41] 梁鹏, 黄霞, 钱易, 等. 污泥减量化技术的研究进展[J]. 环境污染治理技术与设备, 2003, 4(1): 44-52. [42] 李鹤超, 肖本益, 严红. 污泥减量化与处理处置技术研究与应用现状[J]. 能源与节能, 2014(5): 90-91. doi: 10.3969/j.issn.2095-0802.2014.05.038 [43] CHUDOBA P, CHUDOBA J, CAPDEVILLE B. The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system[J]. Water Science & Technology, 1992, 26(9): 2477-2480. [44] CHUDOBA P, MOREL A, CAPDEVILLE B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system[J]. Environmental Technology, 1992, 13(8): 761-770. doi: 10.1080/09593339209385207 [45] CHEN G, AN K, SABY S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Research, 2003, 37(16): 3855-3866. doi: 10.1016/S0043-1354(03)00331-2 [46] CHON D H, ROME M, KIM Y M, et al. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes[J]. Water Research, 2011, 45(18): 6021-6029. doi: 10.1016/j.watres.2011.08.051 [47] FERRENTINO R, LANGONE M, MERZARI F, et al. A review of anaerobic side-stream reactor for excess sludge reduction: Configurations, mechanisms, and efficiency[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 382-405. doi: 10.1080/10643389.2015.1096879 [48] YE F X, ZHU R F, LI Y. Effect of sludge retention time in sludge holding tank on excess sludge production in the oxic-settling-anoxic (OSA) activated sludge process[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008, 83(1): 109-114. [49] SABY S, DJAFER M, CHEN G H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J]. Water Research, 2003, 37(1): 11-20. doi: 10.1016/S0043-1354(02)00253-1 [50] LOW E W, CHASE H A. The effect of maintenance energy requirements on biomass production during wastewater treatment[J]. Water Research, 1999, 33(3): 847-853. doi: 10.1016/S0043-1354(98)00252-8 [51] 郝晓地, 朱景义, 曹亚莉, 等. 污水生物处理系统中内源过程的研究进展[J]. 环境科学学报, 2009, 29(2): 231-242. doi: 10.3321/j.issn:0253-2468.2009.02.002 [52] PIRT S J. Maintenance energy: A general model for energy-limited and energy-sufficient growth[J]. Archives of Microbiology, 1982, 133(4): 300-302. doi: 10.1007/BF00521294 [53] PIRT S J. The maintenance energy of bacteria in growing cultures[J]. Proceedings of the Royal Society of London(Series B), 1965, 163(991): 224-231. [54] VAN L M C M, MOGENS H. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Science & Technology, 1999, 39(1): 107-117. [55] WUNDERLICH R, BARRY J, GREENWOOD D, et al. Start-up of a high-purity, oxygen-activated sludge system at the Los Angeles County Sanitation Districts’ Joint Water Pollution Control Plant[J]. Water Pollution Control Federation, 1985, 57(10): 1012-1018. [56] TECK H C, LOONG K S, SUN D D, et al. Influence of a prolonged solid retention time environment on nitrification/denitrification and sludge production in a submerged membrane bioreactor[J]. Desalination, 2009, 245(1/2/3): 28-43. [57] LAERA G, POLLICE A, SATURNO D, et al. Zero net growth in a membrane bioreactor with complete sludge retention[J]. Water Research, 2005, 39(20): 5241-5249. doi: 10.1016/j.watres.2005.10.010 [58] LAWRENC E, ALONZO W, MCCART Y, et al. Unified basis for biological treatment design and operation[J]. Journal of the Sanitary Engineering Division, 1971, 97(6): 930-933. [59] WATSON T G. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae[J]. Journal of General Microbiology, 1970, 64(1): 91-99. doi: 10.1099/00221287-64-1-91 [60] STRACHAN L F, FREITAS D S L M, LEAK D J, et al. Minimisation of biomass in an extractive membrane bioreactor[J]. Water Science & Technology, 1996, 34(5/6): 273-280. [61] HAMODA M F, AL-ATTAR I M S. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water Science and Technology, 1995, 31(9): 61-72. doi: 10.2166/wst.1995.0345 [62] GIKAS P. Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach[J]. Journal of Hazardous Materials, 2007, 143(1/2): 246-256. [63] ANTONIADIS V, ROBINSON J S, ALLOWAY B J. Effect of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field[J]. Chemosphere, 2008, 71(4): 759-764. doi: 10.1016/j.chemosphere.2007.10.015 [64] CAI Y, ZHAO X, ZHAO Y, et al. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability[J]. Bioresource Technology, 2018, 250: 163-170. doi: 10.1016/j.biortech.2017.07.151 [65] YEKTA S S, GUSTAVSSON J, SVENSSON B H, et al. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors[J]. Talanta, 2012, 89: 470-477. doi: 10.1016/j.talanta.2011.12.065 [66] THANH P M, KETHEESAN B, YAN Z, et al. Effect of ethylenediamine-N, N′-disuccinic acid (EDDS) on the speciation and bioavailability of Fe2+ in the presence of sulfide in anaerobic digestion[J]. Bioresource Technology, 2017, 229: 169-179. doi: 10.1016/j.biortech.2016.12.113 [67] ZHANG W, ZHANG L, LI A. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277. doi: 10.1016/j.watres.2015.07.010 [68] SAJANI L S, MOHAN P M. Characterization of a cobalt-resistant mutant of Neurospora crassa with transport block[J]. BioMetals, 1997, 10(3): 175-183. doi: 10.1023/A:1018347627172 [69] LOWE K L, STRAUBE W, LITTLE B, et al. Aerobic and anaerobic reduction of Cr (VI) by Shewanella oneidensis effects of cationic metals, sorbing agents and mixed microbial cultures[J]. Acta Biotechnologica, 2003, 23(2/3): 161-178. [70] GIKAS P, ROMANOS P. Effects of tri-valent (Cr(III)) and hexa-valent (Cr(VI)) chromium on the growth of activated sludge[J]. Journal of Hazardous Materials, 2006, 133(1/2/3): 212-217. [71] RUSSELL J B, WALLACE R J. Energy-Yielding and Energy-Consuming Reactions[M]. Springer, Dordrecht, 1997. [72] MORBY A P, TURNER J S, HUCKLE J W, et al. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: Identification of a Zn inhibited DNA-protein complex[J]. Nucleic Acids Research, 1993, 21(4): 921-925. doi: 10.1093/nar/21.4.921 [73] GILLER K E, WITTER E, MCGRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review[J]. Soil Biology and Biochemistry, 1998, 30(10/11): 1389-1414. [74] STASINAKIS A S, MAMAIS D, THOMAIDIS N S, et al. Effect of chromium Cr(VI) on bacterial kinetics of heterotrophic biomass of activated sludge[J]. Water Research, 2002, 36(13): 3341-3349. doi: 10.1016/S0043-1354(02)00018-0 [75] CABRERO A, FERNANDEZ S, MIRADA F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics[J]. Water Research, 1998, 32(5): 1355-1362. doi: 10.1016/S0043-1354(97)00366-7 [76] 李冰, 李玉瑛. 镍、铬对活性污泥真实产率的影响[J]. 环境污染与防治, 2007, 29(2): 151-154. doi: 10.3969/j.issn.1001-3865.2007.02.019 [77] SILVER S. Bacterial resistances to toxic metal ions: A review[J]. Gene, 1996, 179(1): 9-19. doi: 10.1016/S0378-1119(96)00323-X [78] WHITE D G, ALEKSHUN M N, MCDERMOTT P F. Frontiers in Antimicrobial Resistance: A Tribute to Stuart B. Levy[M]. Washington D C: ASM Press, 2005. [79] ŞENGÖR S S, BARUA S, GIKAS P, et al. Influence of heavy metals on microbial growth kinetics including lag time: Mathematical modeling and experimental verification[J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2020-2029. doi: 10.1897/08-273.1 [80] VAN L M C M, HENZE M. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Science and Technology, 1999, 39(1): 107-117. doi: 10.2166/wst.1999.0024 [81] 鞠小丽, 陈亮, 陈克平, 等. 程序性细胞死亡 Pyroptosis 最新研究进展[J]. 安徽医科大学学报, 2017, 52(3): 456-461. [82] 刘文龙, 彭永臻, 苗圆圆, 等. 好氧饥饿对膨胀污泥硝化性能及污泥特性的影响[J]. 化工学报, 2015, 66(3): 1142-1149. doi: 10.11949/j.issn.0438-1157.20141138 [83] 张秀芳, 刘永健. 浮游植物细胞程序化死亡研究进展[J]. 生态环境学报, 2007, 16(6): 1801-1806. doi: 10.3969/j.issn.1674-5906.2007.06.042 [84] COHEN S S, BARNER H D. Studies on unbalanced growth in Escherichia Coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1954, 40(10): 885-893. doi: 10.1073/pnas.40.10.885 [85] LEE S H, ONUKI M, SATOH H, et al. Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection[J]. Letters in Applied Microbiology, 2010, 42(3): 259-264. [86] OTAWA K, LEE S, YAMAZOE A, et al. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes[J]. Microbial Ecology, 2007, 53(1): 143-152. doi: 10.1007/s00248-006-9150-9 [87] 吴疆, 邓磊, 范昕建. 细菌程序化死亡的研究现状[J]. 生物医学工程学杂志, 2011, 28(1): 199-202. [88] 张小霞, 张忠信. 病毒对细胞凋亡的影响及作用机理[J]. 中国病毒学, 2002, 17(3): 289-295. [89] 任杰, 林炜铁, 罗小春, 等. 硝化菌保藏特性及衰减动力学研究[J]. 中国生物工程杂志, 2007, 27(12): 61-65. [90] SIEGRIST H, BRUNNER I, KOCH G, et al. Reduction of biomass decay rate under anoxic and anaerobic conditions[J]. Water Science & Technology, 1999, 39(1): 129-137. [91] SLAZER R. Contribution to the determination of kinetic parameters for nitrification in activated sludge plants treating industrial wastewaters[D]. Vienna: Institute of Water Quality, Technical University of Vienna, 1992. [92] TOM G L V, CHAIM D M, NICO B, et al. Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal[J]. Bioresource Technology, 2018, 269: 104-112. doi: 10.1016/j.biortech.2018.08.012 [93] TIJHUIS L, VAN LOOSDRECHT M C M, HEIJNEN J J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[J]. Biotechnology and Bioengineering, 1993, 42(4): 509-519. doi: 10.1002/bit.260420415 [94] BRDJANOVIC D, SLAMET A, VAN LOOSDRECHT M C M, et al. Impact of excessive aeration on biological phosphorus removal from wastewater[J]. Water Research, 1998, 32(1): 200-208. doi: 10.1016/S0043-1354(97)00183-8 [95] WANG J L, WANG J Z. Application of radiation technology to sewage sludge processing: A review[J]. Journal of Hazardous Materials, 2007, 143(1/2): 2-7. [96] KIM T H, NAM Y K, PARK C, et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification[J]. Bioresource Technology, 2009, 100(23): 5694-5699. doi: 10.1016/j.biortech.2009.06.049 [97] CHU L, WANG J, WANG B. Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge[J]. Biochemical Engineering Journal, 2011, 54(1): 34-39. doi: 10.1016/j.bej.2011.01.004 [98] HE S B, WANG B Z, WANG L, et al. A novel approach to treat combined domestic wastewater and excess sludge in MBR[J]. Journal of Environmental Sciences, 2003, 15(5): 674-679. [99] OH Y K, LEE K R, KO K B, et al. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor[J]. Water Research, 2007, 41(12): 2665-2671. doi: 10.1016/j.watres.2007.02.028 [100] VENTURA J S, SEO S, CHUNG I, et al. Enhanced reduction of excess sludge and nutrient removal in a pilot-scale A2O-MBR-TAD system[J]. Water Science and Technology, 2011, 63(8): 1547-1556. doi: 10.2166/wst.2011.201 [101] 邹海明, 吕锡武, 史静, 等. 双污泥反硝化除磷-诱导磷结晶工艺中污泥的衰减特征[J]. 中南大学学报(自然科学版), 2014, 45(3): 997-1003. [102] BOLLMANN A, SCHMIDT I, SAUNDERS A M, et al. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of nitrosospira briensis[J]. Applied and Environmental Microbiology, 2005, 71(3): 1276-1282. doi: 10.1128/AEM.71.3.1276-1282.2005 [103] 占新华, 周立祥, 吴慧兰. 不同无害化处理对污泥中有机组分的影响[J]. 中国环境科学, 2005, 25(1): 1-5. doi: 10.3321/j.issn:1000-6923.2005.01.001 [104] CHANG J, CHUDOBA P, CAPDEVILLE B. Determination of the maintenance requirements of activated sludge[J]. Soft Computing, 1993, 18(6): 1177-1188. [105] GOEL R K, NOGUERA D R. Evaluation of sludge yield and phosphorus removal in a Cannibal solids reduction process[J]. Journal of Environmental Engineering, 2006, 132(10): 1331-1337. doi: 10.1061/(ASCE)0733-9372(2006)132:10(1331) [106] HUANG B, WANG H C, CUI D, et al. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR)[J]. Chemical Engineering Journal, 2018, 341(1): 238-247. [107] DONG Q, PARKER W, DAGNEW M. Impact of FeCl3, dosing on AnMBR treatment of municipal wastewater[J]. Water Research, 2015, 80: 281-293. doi: 10.1016/j.watres.2015.04.025 [108] GOUVEIA J, PLAZA F, GARRALON G, et al. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions[J]. Bioresource Technology, 2015, 198: 510-519. doi: 10.1016/j.biortech.2015.09.039 [109] SHIN C, MCCARTY P L, KIM J, et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J]. Bioresource Technology, 2014, 159: 95-103. doi: 10.1016/j.biortech.2014.02.060 [110] JIANG Y F, WANG L, WANG B Z, et al. Sludge ozonation and its effect on performance of submerged membrane bio-reactor[J]. Journal of Harbin Institute of Technology, 2007, 14(6): 807-811. [111] DO K U, BANU R J, SON D H, et al. Influence of ferrous sulfate on thermochemical sludge disintegration and on performances of wastewater treatment in a new process: Anoxic-oxic membrane bioreactor coupled with sludge disintegration step[J]. Biochemical Engineering Journal, 2012, 66: 20-26. doi: 10.1016/j.bej.2012.04.013 [112] YOON S H, KIM H S, LEE S. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J]. Process Biochemistry, 2004, 39(12): 1923-1929. doi: 10.1016/j.procbio.2003.09.023 [113] 王亚炜, 肖庆聪, 阎鸿, 等. 基于微波预处理的源头污泥减量研究[J]. 中国给水排水, 2013, 29(15): 19-23. doi: 10.3969/j.issn.1000-4602.2013.15.005 [114] 王琳, 王宝贞, 张相忠. 利用臭氧氧化实现污泥减量[J]. 中国给水排水, 2003, 19(5): 38-40. doi: 10.3321/j.issn:1000-4602.2003.05.011 [115] 安东, 崔福义, 刘冬梅, 等. 宾县水库水经ClO2与Cl2预处理的副产物[J]. 哈尔滨工业大学学报, 2004, 36(5): 627-630. doi: 10.3321/j.issn:0367-6234.2004.05.018 [116] 张自杰, 林荣枕, 金儒霖. 排水工程[M]. 5版. 北京: 中国建筑工业出版社, 2015.