[1] 国家统计局城市社会经济调查司. 中国城市建设统计年鉴[M]. 北京: 中国统计出版社, 2018.
[2] 金文标, 王建芳, 赵庆良, 等. 好氧-沉淀-厌氧工艺剩余污泥减量性能和机理研究[J]. 环境科学, 2008, 29(3): 726-732. doi: 10.3321/j.issn:0250-3301.2008.03.031
[3] WANG G, SUI J, SHEN H, et al. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation[J]. Journal of Hazardous Materials, 2011, 192(1): 93-98.
[4] 冯权, 邢新会, 刘则华. 以剩余污泥减量化为目标的废水生物处理技术研究进展[J]. 化工进展, 2004, 23(8): 832-836. doi: 10.3321/j.issn:1000-6613.2004.08.007
[5] 宁欣强, 乔文文, 张蕾, 等. 基于磷脂脂肪酸法分析A+OSA污泥减量工艺微生物群落结构[J]. 环境工程学报, 2015, 9(10): 5024-5030.
[6] KHURSHEED A, SHARMA M K, TYAGI V K, et al. Specific oxygen uptake rate gradient: Another possible cause of excess sludge reduction in oxic-settling-anaerobic (OSA) process[J]. Chemical Engineering Journal, 2015, 281: 613-622. doi: 10.1016/j.cej.2015.06.105
[7] WANG Y, LI Y, WU G. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process[J]. Environmental Technology Letters, 2017, 38(3): 305-315. doi: 10.1080/09593330.2016.1192223
[8] LOBOS J, WISNIEWSKI C, HERAN M, et al. Effects of starvation conditions on biomass behaviour for minimization of sludge production in membrane bioreactors[J]. Water Science & Technology, 2005, 51(6/7): 35-44.
[9] HE M H, WEI C H. Performance of membrane bioreactor (MBR) system with sludge Fenton oxidation process for minimization of excess sludge production[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 597-601.
[10] MA H, ZHANG S, LU X, et al. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment[J]. Bioresource Technology, 2012, 116: 441-447. doi: 10.1016/j.biortech.2012.03.091
[11] WEI Y, VAN HOUTEN R T, BORGER A R, et al. Minimization of excess sludge production for biological wastewater treatment[J]. Water Research, 2003, 37(18): 4453-4467. doi: 10.1016/S0043-1354(03)00441-X
[12] GUO J S, FANG F, YAN P, et al. Sludge reduction based on microbial metabolism for sustainable wastewater treatment[J]. Bioresource Technology, 2019, 297: 122506.
[13] HAN H, HEMP J, PACE L A, et al. Adaptation of aerobic respiration to low O2 environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14109-14114. doi: 10.1073/pnas.1018958108
[14] WEIJERS S R, VANROLLEGHEM P A. A procedure for selecting best identifiable parameters in calibrating activated sludge model No. 1 to full-scale plant data[J]. Water Science & Technology, 1997, 36(5): 69-79.
[15] 李颖, 文莹, 关国华, 等. 微生物生理学[M]. 北京: 科学出版社, 2009.
[16] ORHON D, SÖZEN S, ARTAN N. The effect of heterotrophic yield on the assessment of the correction factor for anoxic growth[J]. Water Science and Technology, 1996, 34(5/6): 67-74.
[17] RUSSELL J B, COOK G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbiology and Molecular Biology Reviews, 1995, 59(1): 48-62.
[18] MCCARTY P L. Energetics of organic matter degradation[M]//MITCHELL R. Water Pollution Microbiology. New York, NY, USA, Wiley, 1972.
[19] MCCARTY P L. Stoichiometry of biological reactions[J]. Progress in Water Technology, 1975, 7(1): 157-172.
[20] KUBA T, SMOLDERS G J F, VAN LOOSDRECHT M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science & Technology, 1993, 27(5/6): 241-252.
[21] SPERANDIO M, URBAINV, AUDIC J M, et al. Use of carbon dioxide evolution rate for determining heterotrophic yield and characterising denitrifying biomass[J]. Water Science & Technology, 1999, 39(1): 139-146.
[22] 冯芬, 杨恬然, 陈萍, 等. 化能异养微生物呼吸与发酵比较[J]. 生物学杂志, 2016(5): 83-86. doi: 10.3969/j.issn.2095-1736.2016.05.083
[23] MIKLÓS M, MENTEL M, HELLEMOND J J V, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes[J]. Microbiology & Molecular Biology Reviews, 2012, 76(2): 444-95.
[24] EKAMA G, WENTZEL M. Biological Wastewater Treatment Principles, Modelling and Design[M]. Glasgow: IWA Publishing, 2008.
[25] 李亚新. 活性污泥法理论与技术[M]. 北京: 中国建筑工业出版社, 2007.
[26] MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism[J]. Nature, 1961, 191(4784): 144-148. doi: 10.1038/191144a0
[27] LIU Y, TAY J. Strategy for minimization of excess sludge production from the activated sludge process[J]. Biotechnology Advances, 2001, 19(2): 97-107. doi: 10.1016/S0734-9750(00)00066-5
[28] OlSCHEWSKI A, PAPP R, NAGARAJ C, et al. Ion channels and transporters as therapeutic targets in the pulmonary circulation[J]. Pharmacology & Therapeutics, 2014, 144(3): 349-368.
[29] HALSEY C M, BENHAM D A, JIJIR D, et al. Influence of the lipid environment on valinomycin structure and cation complex formation[J]. Spectrochimica Acta, 2012, 96: 200-206. doi: 10.1016/j.saa.2012.05.022
[30] TERADA H. Uncouplers of oxidative phosphorylation[J]. Environmental Health Perspectives, 1990, 87(1): 213-218.
[31] GOSTOMSKI P A, VELA R J D. Metabolic uncouplers for controlling biomass accumulation in biological waste treatment systems[J]. Reviews in Environmental Science and Bio/Technology, 2017, 17(1): 1-18.
[32] FANG F, HU H L, QIN M M, et al. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge[J]. Bioresource Technology, 2015, 185: 1-6. doi: 10.1016/j.biortech.2015.02.054
[33] XIAO B, LI H, YAN H, et al. Evaluation of the sludge reduction effectiveness of a metabolic uncoupler-tetrakis (hydroxymethyl) phosphonium sulfate in anaerobic/anoxic/oxic process[J]. Desalination & Water Treatment, 2016, 57(13): 5772-5780.
[34] LI P, LI H, LI J, et al. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process[J]. Bioresource Technology, 2016, 221: 31-36. doi: 10.1016/j.biortech.2016.09.019
[35] PAVEL P. Biodegradability of Organic Substances in the Aquatic Environment[M]. Boca Raton, CRC Press, 1990.
[36] CHUDOBA P, CAPDEVILLE B, CHUDOBA J. Explanation of biological meaning of the So/Xo ratio in batch cultivation[J]. IWA Publishing, 1992, 26(5): 743-751.
[37] LIU Y, CHEN G H, PAUL E. Effect of the So/Xo ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge[J]. Water Research, 1998, 32(10): 2883-2888. doi: 10.1016/S0043-1354(98)00071-2
[38] RUSSELL J B, COOK G M. Energetics of bacterial growth: Balance of anabolic and catabolic reactions[J]. Microbiological Reviews, 1995, 59(1): 48-62. doi: 10.1128/MMBR.59.1.48-62.1995
[39] COOK G M, RUSSELL J B. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance[J]. Applied and Environmental Microbiology, 1994, 60(6): 1942-1948. doi: 10.1128/AEM.60.6.1942-1948.1994
[40] RUSSELL J. Energy-Yielding and Energy-Consuming Reactions[M]. The Rumen Microbial Ecosystem. Berlin, Springer Netherlands, 1997.
[41] 梁鹏, 黄霞, 钱易, 等. 污泥减量化技术的研究进展[J]. 环境污染治理技术与设备, 2003, 4(1): 44-52.
[42] 李鹤超, 肖本益, 严红. 污泥减量化与处理处置技术研究与应用现状[J]. 能源与节能, 2014(5): 90-91. doi: 10.3969/j.issn.2095-0802.2014.05.038
[43] CHUDOBA P, CHUDOBA J, CAPDEVILLE B. The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system[J]. Water Science & Technology, 1992, 26(9): 2477-2480.
[44] CHUDOBA P, MOREL A, CAPDEVILLE B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system[J]. Environmental Technology, 1992, 13(8): 761-770. doi: 10.1080/09593339209385207
[45] CHEN G, AN K, SABY S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Research, 2003, 37(16): 3855-3866. doi: 10.1016/S0043-1354(03)00331-2
[46] CHON D H, ROME M, KIM Y M, et al. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes[J]. Water Research, 2011, 45(18): 6021-6029. doi: 10.1016/j.watres.2011.08.051
[47] FERRENTINO R, LANGONE M, MERZARI F, et al. A review of anaerobic side-stream reactor for excess sludge reduction: Configurations, mechanisms, and efficiency[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 382-405. doi: 10.1080/10643389.2015.1096879
[48] YE F X, ZHU R F, LI Y. Effect of sludge retention time in sludge holding tank on excess sludge production in the oxic-settling-anoxic (OSA) activated sludge process[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008, 83(1): 109-114.
[49] SABY S, DJAFER M, CHEN G H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J]. Water Research, 2003, 37(1): 11-20. doi: 10.1016/S0043-1354(02)00253-1
[50] LOW E W, CHASE H A. The effect of maintenance energy requirements on biomass production during wastewater treatment[J]. Water Research, 1999, 33(3): 847-853. doi: 10.1016/S0043-1354(98)00252-8
[51] 郝晓地, 朱景义, 曹亚莉, 等. 污水生物处理系统中内源过程的研究进展[J]. 环境科学学报, 2009, 29(2): 231-242. doi: 10.3321/j.issn:0253-2468.2009.02.002
[52] PIRT S J. Maintenance energy: A general model for energy-limited and energy-sufficient growth[J]. Archives of Microbiology, 1982, 133(4): 300-302. doi: 10.1007/BF00521294
[53] PIRT S J. The maintenance energy of bacteria in growing cultures[J]. Proceedings of the Royal Society of London(Series B), 1965, 163(991): 224-231.
[54] VAN L M C M, MOGENS H. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Science & Technology, 1999, 39(1): 107-117.
[55] WUNDERLICH R, BARRY J, GREENWOOD D, et al. Start-up of a high-purity, oxygen-activated sludge system at the Los Angeles County Sanitation Districts’ Joint Water Pollution Control Plant[J]. Water Pollution Control Federation, 1985, 57(10): 1012-1018.
[56] TECK H C, LOONG K S, SUN D D, et al. Influence of a prolonged solid retention time environment on nitrification/denitrification and sludge production in a submerged membrane bioreactor[J]. Desalination, 2009, 245(1/2/3): 28-43.
[57] LAERA G, POLLICE A, SATURNO D, et al. Zero net growth in a membrane bioreactor with complete sludge retention[J]. Water Research, 2005, 39(20): 5241-5249. doi: 10.1016/j.watres.2005.10.010
[58] LAWRENC E, ALONZO W, MCCART Y, et al. Unified basis for biological treatment design and operation[J]. Journal of the Sanitary Engineering Division, 1971, 97(6): 930-933.
[59] WATSON T G. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae[J]. Journal of General Microbiology, 1970, 64(1): 91-99. doi: 10.1099/00221287-64-1-91
[60] STRACHAN L F, FREITAS D S L M, LEAK D J, et al. Minimisation of biomass in an extractive membrane bioreactor[J]. Water Science & Technology, 1996, 34(5/6): 273-280.
[61] HAMODA M F, AL-ATTAR I M S. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water Science and Technology, 1995, 31(9): 61-72. doi: 10.2166/wst.1995.0345
[62] GIKAS P. Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach[J]. Journal of Hazardous Materials, 2007, 143(1/2): 246-256.
[63] ANTONIADIS V, ROBINSON J S, ALLOWAY B J. Effect of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field[J]. Chemosphere, 2008, 71(4): 759-764. doi: 10.1016/j.chemosphere.2007.10.015
[64] CAI Y, ZHAO X, ZHAO Y, et al. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability[J]. Bioresource Technology, 2018, 250: 163-170. doi: 10.1016/j.biortech.2017.07.151
[65] YEKTA S S, GUSTAVSSON J, SVENSSON B H, et al. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors[J]. Talanta, 2012, 89: 470-477. doi: 10.1016/j.talanta.2011.12.065
[66] THANH P M, KETHEESAN B, YAN Z, et al. Effect of ethylenediamine-N, N′-disuccinic acid (EDDS) on the speciation and bioavailability of Fe2+ in the presence of sulfide in anaerobic digestion[J]. Bioresource Technology, 2017, 229: 169-179. doi: 10.1016/j.biortech.2016.12.113
[67] ZHANG W, ZHANG L, LI A. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277. doi: 10.1016/j.watres.2015.07.010
[68] SAJANI L S, MOHAN P M. Characterization of a cobalt-resistant mutant of Neurospora crassa with transport block[J]. BioMetals, 1997, 10(3): 175-183. doi: 10.1023/A:1018347627172
[69] LOWE K L, STRAUBE W, LITTLE B, et al. Aerobic and anaerobic reduction of Cr (VI) by Shewanella oneidensis effects of cationic metals, sorbing agents and mixed microbial cultures[J]. Acta Biotechnologica, 2003, 23(2/3): 161-178.
[70] GIKAS P, ROMANOS P. Effects of tri-valent (Cr(III)) and hexa-valent (Cr(VI)) chromium on the growth of activated sludge[J]. Journal of Hazardous Materials, 2006, 133(1/2/3): 212-217.
[71] RUSSELL J B, WALLACE R J. Energy-Yielding and Energy-Consuming Reactions[M]. Springer, Dordrecht, 1997.
[72] MORBY A P, TURNER J S, HUCKLE J W, et al. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: Identification of a Zn inhibited DNA-protein complex[J]. Nucleic Acids Research, 1993, 21(4): 921-925. doi: 10.1093/nar/21.4.921
[73] GILLER K E, WITTER E, MCGRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review[J]. Soil Biology and Biochemistry, 1998, 30(10/11): 1389-1414.
[74] STASINAKIS A S, MAMAIS D, THOMAIDIS N S, et al. Effect of chromium Cr(VI) on bacterial kinetics of heterotrophic biomass of activated sludge[J]. Water Research, 2002, 36(13): 3341-3349. doi: 10.1016/S0043-1354(02)00018-0
[75] CABRERO A, FERNANDEZ S, MIRADA F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics[J]. Water Research, 1998, 32(5): 1355-1362. doi: 10.1016/S0043-1354(97)00366-7
[76] 李冰, 李玉瑛. 镍、铬对活性污泥真实产率的影响[J]. 环境污染与防治, 2007, 29(2): 151-154. doi: 10.3969/j.issn.1001-3865.2007.02.019
[77] SILVER S. Bacterial resistances to toxic metal ions: A review[J]. Gene, 1996, 179(1): 9-19. doi: 10.1016/S0378-1119(96)00323-X
[78] WHITE D G, ALEKSHUN M N, MCDERMOTT P F. Frontiers in Antimicrobial Resistance: A Tribute to Stuart B. Levy[M]. Washington D C: ASM Press, 2005.
[79] ŞENGÖR S S, BARUA S, GIKAS P, et al. Influence of heavy metals on microbial growth kinetics including lag time: Mathematical modeling and experimental verification[J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2020-2029. doi: 10.1897/08-273.1
[80] VAN L M C M, HENZE M. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Science and Technology, 1999, 39(1): 107-117. doi: 10.2166/wst.1999.0024
[81] 鞠小丽, 陈亮, 陈克平, 等. 程序性细胞死亡 Pyroptosis 最新研究进展[J]. 安徽医科大学学报, 2017, 52(3): 456-461.
[82] 刘文龙, 彭永臻, 苗圆圆, 等. 好氧饥饿对膨胀污泥硝化性能及污泥特性的影响[J]. 化工学报, 2015, 66(3): 1142-1149. doi: 10.11949/j.issn.0438-1157.20141138
[83] 张秀芳, 刘永健. 浮游植物细胞程序化死亡研究进展[J]. 生态环境学报, 2007, 16(6): 1801-1806. doi: 10.3969/j.issn.1674-5906.2007.06.042
[84] COHEN S S, BARNER H D. Studies on unbalanced growth in Escherichia Coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1954, 40(10): 885-893. doi: 10.1073/pnas.40.10.885
[85] LEE S H, ONUKI M, SATOH H, et al. Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection[J]. Letters in Applied Microbiology, 2010, 42(3): 259-264.
[86] OTAWA K, LEE S, YAMAZOE A, et al. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes[J]. Microbial Ecology, 2007, 53(1): 143-152. doi: 10.1007/s00248-006-9150-9
[87] 吴疆, 邓磊, 范昕建. 细菌程序化死亡的研究现状[J]. 生物医学工程学杂志, 2011, 28(1): 199-202.
[88] 张小霞, 张忠信. 病毒对细胞凋亡的影响及作用机理[J]. 中国病毒学, 2002, 17(3): 289-295.
[89] 任杰, 林炜铁, 罗小春, 等. 硝化菌保藏特性及衰减动力学研究[J]. 中国生物工程杂志, 2007, 27(12): 61-65.
[90] SIEGRIST H, BRUNNER I, KOCH G, et al. Reduction of biomass decay rate under anoxic and anaerobic conditions[J]. Water Science & Technology, 1999, 39(1): 129-137.
[91] SLAZER R. Contribution to the determination of kinetic parameters for nitrification in activated sludge plants treating industrial wastewaters[D]. Vienna: Institute of Water Quality, Technical University of Vienna, 1992.
[92] TOM G L V, CHAIM D M, NICO B, et al. Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal[J]. Bioresource Technology, 2018, 269: 104-112. doi: 10.1016/j.biortech.2018.08.012
[93] TIJHUIS L, VAN LOOSDRECHT M C M, HEIJNEN J J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[J]. Biotechnology and Bioengineering, 1993, 42(4): 509-519. doi: 10.1002/bit.260420415
[94] BRDJANOVIC D, SLAMET A, VAN LOOSDRECHT M C M, et al. Impact of excessive aeration on biological phosphorus removal from wastewater[J]. Water Research, 1998, 32(1): 200-208. doi: 10.1016/S0043-1354(97)00183-8
[95] WANG J L, WANG J Z. Application of radiation technology to sewage sludge processing: A review[J]. Journal of Hazardous Materials, 2007, 143(1/2): 2-7.
[96] KIM T H, NAM Y K, PARK C, et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification[J]. Bioresource Technology, 2009, 100(23): 5694-5699. doi: 10.1016/j.biortech.2009.06.049
[97] CHU L, WANG J, WANG B. Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge[J]. Biochemical Engineering Journal, 2011, 54(1): 34-39. doi: 10.1016/j.bej.2011.01.004
[98] HE S B, WANG B Z, WANG L, et al. A novel approach to treat combined domestic wastewater and excess sludge in MBR[J]. Journal of Environmental Sciences, 2003, 15(5): 674-679.
[99] OH Y K, LEE K R, KO K B, et al. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor[J]. Water Research, 2007, 41(12): 2665-2671. doi: 10.1016/j.watres.2007.02.028
[100] VENTURA J S, SEO S, CHUNG I, et al. Enhanced reduction of excess sludge and nutrient removal in a pilot-scale A2O-MBR-TAD system[J]. Water Science and Technology, 2011, 63(8): 1547-1556. doi: 10.2166/wst.2011.201
[101] 邹海明, 吕锡武, 史静, 等. 双污泥反硝化除磷-诱导磷结晶工艺中污泥的衰减特征[J]. 中南大学学报(自然科学版), 2014, 45(3): 997-1003.
[102] BOLLMANN A, SCHMIDT I, SAUNDERS A M, et al. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of nitrosospira briensis[J]. Applied and Environmental Microbiology, 2005, 71(3): 1276-1282. doi: 10.1128/AEM.71.3.1276-1282.2005
[103] 占新华, 周立祥, 吴慧兰. 不同无害化处理对污泥中有机组分的影响[J]. 中国环境科学, 2005, 25(1): 1-5. doi: 10.3321/j.issn:1000-6923.2005.01.001
[104] CHANG J, CHUDOBA P, CAPDEVILLE B. Determination of the maintenance requirements of activated sludge[J]. Soft Computing, 1993, 18(6): 1177-1188.
[105] GOEL R K, NOGUERA D R. Evaluation of sludge yield and phosphorus removal in a Cannibal solids reduction process[J]. Journal of Environmental Engineering, 2006, 132(10): 1331-1337. doi: 10.1061/(ASCE)0733-9372(2006)132:10(1331)
[106] HUANG B, WANG H C, CUI D, et al. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR)[J]. Chemical Engineering Journal, 2018, 341(1): 238-247.
[107] DONG Q, PARKER W, DAGNEW M. Impact of FeCl3, dosing on AnMBR treatment of municipal wastewater[J]. Water Research, 2015, 80: 281-293. doi: 10.1016/j.watres.2015.04.025
[108] GOUVEIA J, PLAZA F, GARRALON G, et al. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions[J]. Bioresource Technology, 2015, 198: 510-519. doi: 10.1016/j.biortech.2015.09.039
[109] SHIN C, MCCARTY P L, KIM J, et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J]. Bioresource Technology, 2014, 159: 95-103. doi: 10.1016/j.biortech.2014.02.060
[110] JIANG Y F, WANG L, WANG B Z, et al. Sludge ozonation and its effect on performance of submerged membrane bio-reactor[J]. Journal of Harbin Institute of Technology, 2007, 14(6): 807-811.
[111] DO K U, BANU R J, SON D H, et al. Influence of ferrous sulfate on thermochemical sludge disintegration and on performances of wastewater treatment in a new process: Anoxic-oxic membrane bioreactor coupled with sludge disintegration step[J]. Biochemical Engineering Journal, 2012, 66: 20-26. doi: 10.1016/j.bej.2012.04.013
[112] YOON S H, KIM H S, LEE S. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J]. Process Biochemistry, 2004, 39(12): 1923-1929. doi: 10.1016/j.procbio.2003.09.023
[113] 王亚炜, 肖庆聪, 阎鸿, 等. 基于微波预处理的源头污泥减量研究[J]. 中国给水排水, 2013, 29(15): 19-23. doi: 10.3969/j.issn.1000-4602.2013.15.005
[114] 王琳, 王宝贞, 张相忠. 利用臭氧氧化实现污泥减量[J]. 中国给水排水, 2003, 19(5): 38-40. doi: 10.3321/j.issn:1000-4602.2003.05.011
[115] 安东, 崔福义, 刘冬梅, 等. 宾县水库水经ClO2与Cl2预处理的副产物[J]. 哈尔滨工业大学学报, 2004, 36(5): 627-630. doi: 10.3321/j.issn:0367-6234.2004.05.018
[116] 张自杰, 林荣枕, 金儒霖. 排水工程[M]. 5版. 北京: 中国建筑工业出版社, 2015.