-
阻燃剂广泛应用于塑料、橡胶和纤维中,用来降低材料的可燃性[1]。2012年,中国有机磷阻燃剂产量超过17.9×104 t,在有机磷阻燃剂中,磷酸三苯酯(TPhP)是一种高产量产品,由于未与最终用途产品化学键合,故在水中可被检测到[2]。澳大利亚地表水中的TPhP浓度高达150 ng·L−1;在中国松花江,TPhP的浓度也可以达到65 ng·L−1;此外,在河南省的污水处理厂中检测到了TPhP[3-5]。在环境中出现的TPhP会通过饮食摄入和呼吸吸入,进而引起人类健康问题,有研究[6]表明,TPhP对胚胎发育、神经系统和免疫系统具有毒理作用。对于模型生物斑马鱼,当暴露于0.10 mg·L−1 TPhP时,对心脏发育具有巨大的毒性作用;通过对暴露于100 μg·L−1 TPhP的成年斑马鱼的生物蓄积和代谢研究,发现其体内TPhP浓度可高达3.12 μg·g−1[7-8]。因此,开发一种有效的材料以去除水中TPhP势在必行。
有研究[9]发现,尿素官能团化Fe3O4@LDH (urea-Fe3O4@LDH)对TPhP表现出了良好的去除效果,去除率可达90%以上,吸附容量高达589 mg·g−1,具有高效快速的吸附特性,吸附速率达到49.9 mg·(g·min)−1,且离子强度对吸附影响较小。而不同环境条件影响吸附过程中各物质的相互作用,故考察urea-Fe3O4@LDH去除TPhP受环境条件的影响情况势在必行。
天然水体中存在着悬浮颗粒物,地下水中悬浮固体的平均浓度约200 mg·L−1,在某些极端情况下,其可能接近500 mg·L−1。在这些悬浮颗粒中,大颗粒相对容易沉降,颗粒携带有机磷污染物形成沉积物,导致污染持续时间长;小颗粒容易在实际运动的水体或实验搅拌的条件下悬浮,从而与污染物更多接触,易影响污染物的去除[10-12]。水体中普遍存在的天然有机物(natural organic matter, NOM)可能改变吸附剂的表面电荷、亲疏水性和极性等性质,影响吸附剂在水体环境中的稳定性和对污染物的去除[13-14]。实际废水中一般有机和无机污染物共存,Br−作为一种无机污染物广泛存在,主要来自海水、地表水、工业废水和油田废水等,其存在极大地影响到人类的健康[15]。
实际水体中颗粒物的主要成分是黏土矿物,而富里酸(FA)、腐殖酸(HA)和可溶性微生物副产物(SMPs)是NOM的最重要组分。本研究利用高岭土模拟颗粒物,用富里酸、腐殖酸和牛血清白蛋白(BSA)模拟水体中存在的有机物,以及Br−作为无机污染物,考察了以上环境条件对urea-Fe3O4@LDH吸附TPhP的影响。利用urea-Fe3O4@LDH吸附剂的电荷特性和阴离子交换性,深入了解吸附过程中有机磷污染物的去除机理,以期为urea-Fe3O4@LDH在实际水体环境中去除有机磷污染物提供参考。
环境条件对尿素官能团化Fe3O4@LDH去除TPhP的影响
Effect of environmental conditions on TPhP removal by urea-functionalized Fe3O4@LDH
-
摘要: 在实际水体中存在的颗粒物、有机物、无机阴离子等对吸附剂的稳定性和污染物的去除率均有重要的影响。所制备的尿素官能团化Fe3O4@LDH (urea-Fe3O4@LDH)对磷酸三苯酯(TPhP)的去除表现出良好的性能,但不同环境条件对TPhP去除率的影响仍未知。基于此,利用高岭土作为模拟颗粒物,用富里酸(FA)、腐殖酸(HA)和牛血清白蛋白(BSA)模拟水体中存在的天然有机物,Br−作为无机污染物,考察了环境因素对urea-Fe3O4@LDH吸附TPhP的影响。结果表明:随着高岭土浓度的升高,urea-Fe3O4@LDH对TPhP的去除率先升高后降低,当高岭土浓度为100~200 mg·L−1时,urea-Fe3O4@LDH对TPhP去除率最高;在同一高岭土浓度下,随颗粒粒径的减小,TPhP去除率相应降低;随着溶液中有机物浓度增大,TPhP去除率有所降低,且在pH=6时对TPhP的去除率高于在pH=4或pH=8时对应的去除率,而溶液中所含有机物的分子质量对TPhP去除率的影响不大;Br−的存在对TPhP的去除率没有影响。urea-Fe3O4@LDH去除TPhP具有良好的环境适应性,以上研究结果可为其在实际水体中的应用提供参考。
-
关键词:
- 尿素官能团化Fe3O4@LDH /
- 磷酸三苯酯 /
- 吸附 /
- 环境条件 /
- 去除率
Abstract: The particles, organic matters and inorganic anions in the actual water have important influences on the adsorbent stability and the removal efficiency of pollutants. The prepared urea-functionalized Fe3O4@LDH (urea-Fe3O4@LDH) showed a good performance for the triphenyl phosphate (TPhP) removal, but the effects of different environmental conditions on TPhP removal are still unknown. Based on this, the kaolin was taken to simulate the typical particles, fulvic acid (FA), humic acid (HA) and bovine serum albumin (BSA) were selected to simulate the natural organic matters in the water, Br− was taken as an inorganic pollutant. Then the effects of the environmental factors on TPhP removal by the urea-Fe3O4@LDH were thoroughly investigated. The results showed that the TPhP removal efficiency by the urea-Fe3O4@LDH increased first and then decreased with the increase of kaolin concentration. When the kaolin concentration was about 100~200 mg·L−1, the TPhP removal efficiency was the highest. At the same kaolin concentration, the TPhP removal efficiency decreased with the decrease of the particle size. With the increase of the concentration of organic matters in the solution, the TPhP removal efficiency decreased, and the TPhP removal efficiency at pH=6 was higher than that at pH=4 or 8. The molecular weight of organic matters had little effect on the TPhP removal efficiency. The presence of Br− had no effect on the TPhP removal efficiency. Thus, the urea-Fe3O4@LDH showed a good environmental adaptability toward TPhP removal. The above work provides a reference for the application of the adsorbent in the actual water. -
表 1 有机物的性质
Table 1. Property of organic matters
有机物 分子质量/kDa E2/E3 E4/E6 FA <0.3 4.42 15.8 HA 0.35 3.45 7.3 HA 0.8~1.4 3.36 6.9 HA 20 3.23 6.6 BSA 66 1.10 1.2 -
[1] 彭绍洪, 江李旺, 刘伟涛, 等. 反溶剂沉淀废旧电子塑料溶液过程中溴系阻燃剂的转移行为及分离[J]. 环境工程学报, 2016, 10(10): 5937-5942. doi: 10.12030/j.cjee.201604027 [2] GU J P, SU F, HONG P P, et al. 1H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line[J]. Science of the Total Environment, 2019, 665: 162-170. doi: 10.1016/j.scitotenv.2019.02.055 [3] TEO T L L, MCDONALD J A, COLEMAN H M, et al. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry[J]. Talanta, 2015, 143: 114-120. doi: 10.1016/j.talanta.2015.04.091 [4] WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38): 6705-6711. doi: 10.1016/j.chroma.2011.07.067 [5] PANG L, YUAN Y T, HE H, et al. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China[J]. Chemosphere, 2016, 152: 245-251. doi: 10.1016/j.chemosphere.2016.02.104 [6] 杨扬. 有机磷酸酯(OPEs)对赤子爱胜蚓的毒性效应及机制研究[D]. 南京: 南京大学, 2018. [7] DU Z, WANG G, GAO S, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators[J]. Aquatic Toxicology, 2015, 161: 25-32. doi: 10.1016/j.aquatox.2015.01.027 [8] WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio)[J]. Science of the Total Environment, 2016, 50(24): 13555-13564. [9] HAO M J, GAO P, YANG D, et al. Highly efficient adsorption behavior and mechanism of urea-Fe3O4@LDH for triphenyl phosphate[J/OL]. [2020-02-14]. Environmental Pollution. https://www-sciencedirect-com.proxy.lib.utk.edu/science/article/pii/S0269749119339211. [10] CHAI C C, LEE Z H, TOH P Y, et al. Effects of dissolved organic matter and suspended solids on the magnetophoretic separation of microalgal cells from an aqueous environment[J]. Chemical Engineering Journal, 2015, 281: 523-530. doi: 10.1016/j.cej.2015.06.108 [11] 孙士权, 梁焱, 赵刚, 等. 粒径和底床地形对沉积物中有机磷释放的影响[J]. 环境工程学报, 2017, 11(3): 1605-1614. doi: 10.12030/j.cjee.201511033 [12] PRASERTKULSAK S, CHIEMCHAISRI C, CHIEMCHAISRI W, et al. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times[J]. Journal of Hazardous Materials, 2019, 368: 124-132. doi: 10.1016/j.jhazmat.2019.01.050 [13] 刘乐, 丁一, 冯艳丽, 等. 纳米双氢氧化物对有机磷农药的吸附与降解[J]. 环境科学与技术, 2018, 41(11): 93-99. [14] 钱飞跃, 史梦婷, 王建芳, 等. 有机物性质对混凝-微滤-纳滤去除水中重金属的影响[J]. 环境工程学报, 2016, 10(7): 3634-3640. doi: 10.12030/j.cjee.201509052 [15] VÄÄRTNÕU M, LUST E. Adsorption of bromide ions at the Bi vertical bar gamma-valerolactone and Bi vertical bar propylene carbonate interfaces[J]. Journal of Electroanalytical Chemistry, 2019, 851: 113438. doi: 10.1016/j.jelechem.2019.113438 [16] NOH J S, SCHWARZ J A. Effect of HNO3 treatment on the surface acidity of activated carbons[J]. Carbon, 1990, 28: 675-682. doi: 10.1016/0008-6223(90)90069-B [17] GAO P, SONG Y, HAO M J, et al. An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction[J]. Separation and Purification Technology, 2018, 201: 238-243. doi: 10.1016/j.seppur.2018.03.017 [18] SHEN M, HAI X, SHANG Y, et al. Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: Complex effects of cations with different molecular weight fractionated natural organic matter[J]. Science of the Total Environment, 2019, 656: 843-851. doi: 10.1016/j.scitotenv.2018.11.387 [19] WANG W, DENG S, LI D, et al. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons[J]. Chemical Engineering Journal, 2018, 332: 286-292. doi: 10.1016/j.cej.2017.09.085 [20] LAZAREVIC-PASTI T, ANICIJEVIC V, BALJOZOVIC M, et al. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water[J]. Environmental Science-Nano, 2018, 5(6): 1482-1494. doi: 10.1039/C8EN00171E [21] 李孟, 吴思, 张斌. 溶液环境对纳米Fe2O3/水界面NOM吸附过程中疏水效应的影响[J]. 环境工程学报, 2012, 6(6): 1817-1822. [22] WANG W, DENG S, LI D, et al. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins[J]. Chemical Engineering Journal, 2018, 354: 105-112. doi: 10.1016/j.cej.2018.08.002 [23] PANG L, YANG P, YANG H, et al. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM)[J]. Science of the Total Environment, 2018, 626: 42-47. doi: 10.1016/j.scitotenv.2018.01.089 [24] WANG X L, SHU L, WANG Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Science of the Total Environment, 2011, 45(21): 9276-9283. [25] WANG L, LI Y T, WENG L P, et al. Using chromatographic and spectroscopic parameters to characterize preference and kinetics in the adsorption of humic and fulvic acid to goethite[J]. Science of the Total Environment, 2019, 666: 766-777. doi: 10.1016/j.scitotenv.2019.02.235