-
湖泊、水库是我国重要的饮用水源,且不少水体都存在不同程度的富营养化问题。当富营养水体发生“水华”时,造成水质恶化[1]。水源水中有害藻华(HABs)因其对水生态系统安全和人类健康产生了负面影响,引起了全世界的关注[2-3]。作为淡水中最普遍的蓝藻之一,铜绿微囊藻(Microcystis aeruginosa)具有生长繁殖的生态优势,在富营养化水体中成为优势藻种影响水质[4]。藻类种群密度在藻华季节的急剧增加严重影响了水处理过程的效率[5]。混凝作为一种常规处理方式,也常用于处理含藻水体工艺中[6]。原水水质是影响混凝效果的最主要因素之一,不同的原水水质,水中污染物含量、成分、pH、碱度等差异将直接影响混凝剂种类的选择和投加量[7-8]。藻华暴发将导致水体pH、碱度等异常升高,水体中的pH甚至可达到9~10,碱度会高于120 mg·L−1。而原水的碱度过高会对混凝过程产生不利影响,尤其是对于铝盐混凝剂,可能会产生出水余铝含量超标的问题[9-10]。
因此,本研究以氯化铝作为混凝剂,以铜绿微囊藻为研究对象,通过投加不同浓度的碳酸氢钠溶液来调节水样的碱度,考察了碱度对混凝去除藻细胞的性能影响,以期为处理富营养化水体和保证饮用水水质提供参考。
水样pH对不同碱度含藻水混凝性能的影响
Effects of pH on the coagulation performance of algae-laden water with different alkalinity
-
摘要: 为探明碱度对混凝去除藻细胞及其分泌有机物的影响,保证饮用水水质。以铜绿微囊藻为研究对象,选用氯化铝(AlCl3·6H2O)作为混凝剂进行混凝实验,考察了不同碱度的含藻水样在pH为6.0~9.0条件下的混凝性能、絮体特性和出水余铝。结果表明:当水样pH=6.0时,相对于低碱度(95、175和245 mg·L−1)水样,碱度较高(330 mg·L−1和415 mg·L−1)的水样Zeta电位趋近于0,可有效降低颗粒间的排斥力,藻细胞的去除率达到74.45%以上(低碱度水样藻细胞去除率在31.64%以下),出水余铝最低为0.003 6 mg·L−1(低碱度时为0.088 9 mg·L−1);当水样pH≥6.5时,碱度较低的水样依靠吸附架桥和网捕卷扫协同作用,使得藻细胞去除率最高达到94.31%,出水余铝可降低至0.035 3 mg·L−1;随着碱度的增加,铝盐水解生成的Al(OH)3胶状沉淀逐渐转变为
${{\rm{Al}}\left( {{\rm{OH}}} \right)_4^ -} $ ,使得网捕卷扫作用减弱,藻细胞去除率有所下降;当水样pH=7.5时,随着碱度增加,平衡时絮体粒径从811.02 μm降低至540.62 μm,絮体强度因子从35.97%降低至24.79%,恢复因子从35.31%增加至47.88%,分形维数从1.586减小到1.372。通过调节水样pH,可有效缓解碱度对含藻水混凝过程的影响,提高藻细胞的去除率。Abstract: In order to investigate the influence of alkalinity on the removal of algal cells and the organic substances secreted by algal cells by coagulation and ensure the drinking water quality, aluminum chloride (AlCl3·6H2O) was used as a coagulant to conduct coagulation test for Microcystis aeruginosa removal. The coagulation performance, floc properties and residual aluminum in effluent were investigated during the treatment of algae-laden water with different basicity. The results showed that when the pHs of water samples were adjusted to 6.0, in comparison with water samples with low alkalinity (95, 175 and 245 mg·L−1 ), the Zeta potentials of water samples with high alkalinity (330 mg·L−1 and 415 mg·L−1 ) approached 0 mV, and the repulsive force between particles decreased effectively. The removal rates for algae cells could reach over 74.45%(below 31.64% for water samples with low alkalinity), the lowest residual aluminum in effluent was 0.003 6 mg·L−1(0.088 9 mg·L−1 for water samples with low alkalinity). When the pH of water sample was above 6.5, the removal rate for algae cells was up to 94.31% during the treatment of water sample with lower alkalinity due to the synergistic effects of bridging effects and sweep coagulation, and the residual aluminum in effluent decreased to 0.035 3 mg·L−1. With increasing the alkalinity, the colloidal precipitation of Al(OH)3 generated in the solution gradually changed to${\rm{Al}}\left( {{\rm{OH}}} \right)_4^ - $ , the effects of sweep coagulation decreased and the removal rate for algae cells decreased accordingly. When the pH of water sample was 7.5, the stable floc size decreased from 811.02 μm to 540.62 μm with the increase of alkalinity, its strength factor for decreased from 35.97% to 24.79%, its recovery factor increased from 35.31% to 47.88%, and its fractal dimension decreased from 1.586 to 1.372. The results indicated that pH regulation could alleviate the effect of alkalinity on the coagulation process of algae-laden water and increase the removal rate of algal cells.-
Key words:
- alkalinity /
- pH of water sample /
- coagulation property /
- floc property /
- Zeta potential /
- residual aluminum in effluent
-
表 1 各碱度含藻水样在不同pH条件下形成絮体的强度因子和恢复因子
Table 1. Strength factors and recovery factors of flocs formed in algae-laden water sample with different alkalinity at different pHs
pH 碱度为175 mg·L−1 碱度为245 mg·L−1 碱度为330 mg·L−1 强度因子/% 恢复因子/% 强度因子/% 恢复因子/% 强度因子/% 恢复因子/% 6.5 37.41 30.12 32.98 38.97 25.95 39.20 7.5 35.97 35.31 32.29 44.42 24.79 47.88 8.5 34.19 47.68 27.39 45.86 21.17 73.99 表 2 各碱度含藻水样在不同pH条件下形成絮体的分形维数
Table 2. Fractal dimension of flocs formed in algae-laden water sample with different alkalinity at different pHs
pH 碱度为175 mg·L−1 碱度为245 mg·L−1 碱度为330 mg·L−1 平衡时 破碎后 再生长后 平衡时 破碎后 再生长后 平衡时 破碎后 再生长后 6.5 1.744 1.916 1.908 1.591 1.756 1.734 1.584 1.748 1.704 7.5 1.586 1.733 1.718 1.516 1.694 1.63 1.372 1.554 1.503 8.5 1.550 1.704 1.677 1.432 1.615 1.551 1.25 1.434 1.395 -
[1] STEFFEN M M, DAVIS T W, MCKAY R M L, et al. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: Linkages between biology and the water supply shutdown of Toledo, OH[J]. Environmental Science & Technology, 2017, 51(12): 6745-6755. [2] DONG F, LIU J, LI C, et al. Ferrate (VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts[J]. Environment International, 2019, 133: 105195. doi: 10.1016/j.envint.2019.105195 [3] JIA P, ZHOU Y, ZHANG X, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe (II) coagulation[J]. Water Research, 2018, 131: 122-130. doi: 10.1016/j.watres.2017.12.020 [4] ZHOU Y, LI X, XIA Q, et al. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation[J]. Science of the Total Environment, 2020, 700: 134501. doi: 10.1016/j.scitotenv.2019.134501 [5] HENDERSON R, PARSONS S A, JEFFERSON B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae[J]. Water Research, 2008, 42(8/9): 1827-1845. [6] HU C, LIU H, QU J, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J]. Environmental Science & Technology, 2006, 40(1): 325-331. [7] 俞文正. 混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响[D]. 哈尔滨: 哈尔滨工业大学, 2010. [8] RATNAWEERA H, GJESSING E, OUG E. Influence of physical-chemical characteristics of natural organic matter (NOM) on coagulation properties: An analysis of eight Norwegian water sources[J]. Water Science & Technology, 1999, 40(9): 89-95. [9] 郭婷婷, 刘锐平, 易秀, 等. 高碱度水库水混凝过程中残留铝控制[J]. 环境工程学报, 2013, 7(3): 836-842. [10] 朱灵峰, 田艳娥, 黄豆豆, 等. 高碱度水混凝过程中残余铝控制影响因素的研究[J]. 河南农业大学学报, 2013, 47(2): 197-201. doi: 10.3969/j.issn.1000-2340.2013.02.017 [11] QI J, LAN H, LIU R, et al. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter[J]. Water Research, 2018, 137: 57-63. doi: 10.1016/j.watres.2018.03.005 [12] 荆晓燕. 天然水水质分析中的计算方法[J]. 内蒙古教育学院学报, 1997, 10(4): 32-34. [13] 刘少敏. 碳酸平衡规律在水质分析中碱度测定的应用[J]. 淮南职业技术学院学报, 2002, 2(2): 75-77. doi: 10.3969/j.issn.1671-4733.2002.02.028 [14] 尚修竹. 城市供水系统水质变化对供水管网管道腐蚀影响的研究[D]. 西安: 西安建筑科技大学, 2013. [15] 刘红, 王东升, 吕春华, 等. Al13去除水中腐殖酸的混凝作用机理[J]. 环境化学, 2005, 24(2): 121-124. doi: 10.3321/j.issn:0254-6108.2005.02.001 [16] 余国忠, 栗印环, 黄斌, 等. 铜绿微囊藻的混凝特性与影响因素研究[J]. 给水排水, 2005, 31(2): 21-25. doi: 10.3969/j.issn.1002-8471.2005.02.006 [17] 晏明全, 王东升, 曲久辉, 等. 典型北方高碱度微污染水体强化混凝的示范研究[J]. 环境科学学报, 2006, 26(6): 887-892. doi: 10.3321/j.issn:0253-2468.2006.06.003 [18] ZHANG L, MAO J, ZHAO Q, et al. Effect of AlCl3 concentration on nanoparticle removal by coagulation[J]. Journal of Environmental Sciences, 2015, 38: 103-109. doi: 10.1016/j.jes.2015.04.014 [19] XU H, JIANG W, XIAO F, et al. The characteristics of flocs and Zeta potential in nano-TiO2 system under different coagulation conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 181-188. [20] XU H, JIAO R, XIAO F, et al. Relative importance of hydrolyzed Al species (Ala, Alb, Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446: 139-150. [21] ZHANG H, YANG L, ZANG X, et al. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation[J]. Science of the Total Environment, 2019, 688: 811-817. doi: 10.1016/j.scitotenv.2019.06.321 [22] WU R M, LEE D J, WAITE T D, et al. Multilevel structure of sludge flocs[J]. Journal of Colloid and Interface Science, 2002, 252(2): 383-392. doi: 10.1006/jcis.2002.8494 [23] 郑蓓, 李涛, 葛小鹏, 等. 不同铝聚合形态对聚合铝混凝效果的影响[J]. 环境科学, 2010, 31(8): 1813-1818. [24] YU W, LIG, XU Y, et al. Breakage and re-growth of flocs formed by alum and PACl[J]. Powder Technology, 2009, 189(3): 439-443. doi: 10.1016/j.powtec.2008.07.008 [25] WANG J, GUAN J, SANTIWONG S R, et al. Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling[J]. Desalination, 2010, 258(1/2/3): 19-27. [26] KIM S H, MOON B H, LEE H I. Effects of pH and dosage on pollutant removal and floc structure during coagulation[J]. Microchemical Journal, 2001, 68(2/3): 197-203.