[1] |
STEFFEN M M, DAVIS T W, MCKAY R M L, et al. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: Linkages between biology and the water supply shutdown of Toledo, OH[J]. Environmental Science & Technology, 2017, 51(12): 6745-6755.
|
[2] |
DONG F, LIU J, LI C, et al. Ferrate (VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts[J]. Environment International, 2019, 133: 105195. doi: 10.1016/j.envint.2019.105195
|
[3] |
JIA P, ZHOU Y, ZHANG X, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe (II) coagulation[J]. Water Research, 2018, 131: 122-130. doi: 10.1016/j.watres.2017.12.020
|
[4] |
ZHOU Y, LI X, XIA Q, et al. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation[J]. Science of the Total Environment, 2020, 700: 134501. doi: 10.1016/j.scitotenv.2019.134501
|
[5] |
HENDERSON R, PARSONS S A, JEFFERSON B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae[J]. Water Research, 2008, 42(8/9): 1827-1845.
|
[6] |
HU C, LIU H, QU J, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J]. Environmental Science & Technology, 2006, 40(1): 325-331.
|
[7] |
俞文正. 混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
[8] |
RATNAWEERA H, GJESSING E, OUG E. Influence of physical-chemical characteristics of natural organic matter (NOM) on coagulation properties: An analysis of eight Norwegian water sources[J]. Water Science & Technology, 1999, 40(9): 89-95.
|
[9] |
郭婷婷, 刘锐平, 易秀, 等. 高碱度水库水混凝过程中残留铝控制[J]. 环境工程学报, 2013, 7(3): 836-842.
|
[10] |
朱灵峰, 田艳娥, 黄豆豆, 等. 高碱度水混凝过程中残余铝控制影响因素的研究[J]. 河南农业大学学报, 2013, 47(2): 197-201. doi: 10.3969/j.issn.1000-2340.2013.02.017
|
[11] |
QI J, LAN H, LIU R, et al. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter[J]. Water Research, 2018, 137: 57-63. doi: 10.1016/j.watres.2018.03.005
|
[12] |
荆晓燕. 天然水水质分析中的计算方法[J]. 内蒙古教育学院学报, 1997, 10(4): 32-34.
|
[13] |
刘少敏. 碳酸平衡规律在水质分析中碱度测定的应用[J]. 淮南职业技术学院学报, 2002, 2(2): 75-77. doi: 10.3969/j.issn.1671-4733.2002.02.028
|
[14] |
尚修竹. 城市供水系统水质变化对供水管网管道腐蚀影响的研究[D]. 西安: 西安建筑科技大学, 2013.
|
[15] |
刘红, 王东升, 吕春华, 等. Al13去除水中腐殖酸的混凝作用机理[J]. 环境化学, 2005, 24(2): 121-124. doi: 10.3321/j.issn:0254-6108.2005.02.001
|
[16] |
余国忠, 栗印环, 黄斌, 等. 铜绿微囊藻的混凝特性与影响因素研究[J]. 给水排水, 2005, 31(2): 21-25. doi: 10.3969/j.issn.1002-8471.2005.02.006
|
[17] |
晏明全, 王东升, 曲久辉, 等. 典型北方高碱度微污染水体强化混凝的示范研究[J]. 环境科学学报, 2006, 26(6): 887-892. doi: 10.3321/j.issn:0253-2468.2006.06.003
|
[18] |
ZHANG L, MAO J, ZHAO Q, et al. Effect of AlCl3 concentration on nanoparticle removal by coagulation[J]. Journal of Environmental Sciences, 2015, 38: 103-109. doi: 10.1016/j.jes.2015.04.014
|
[19] |
XU H, JIANG W, XIAO F, et al. The characteristics of flocs and Zeta potential in nano-TiO2 system under different coagulation conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 181-188.
|
[20] |
XU H, JIAO R, XIAO F, et al. Relative importance of hydrolyzed Al species (Ala, Alb, Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446: 139-150.
|
[21] |
ZHANG H, YANG L, ZANG X, et al. Effect of shear rate on floc characteristics and concentration factors for the harvesting of Chlorella vulgaris using coagulation-flocculation-sedimentation[J]. Science of the Total Environment, 2019, 688: 811-817. doi: 10.1016/j.scitotenv.2019.06.321
|
[22] |
WU R M, LEE D J, WAITE T D, et al. Multilevel structure of sludge flocs[J]. Journal of Colloid and Interface Science, 2002, 252(2): 383-392. doi: 10.1006/jcis.2002.8494
|
[23] |
郑蓓, 李涛, 葛小鹏, 等. 不同铝聚合形态对聚合铝混凝效果的影响[J]. 环境科学, 2010, 31(8): 1813-1818.
|
[24] |
YU W, LIG, XU Y, et al. Breakage and re-growth of flocs formed by alum and PACl[J]. Powder Technology, 2009, 189(3): 439-443. doi: 10.1016/j.powtec.2008.07.008
|
[25] |
WANG J, GUAN J, SANTIWONG S R, et al. Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling[J]. Desalination, 2010, 258(1/2/3): 19-27.
|
[26] |
KIM S H, MOON B H, LEE H I. Effects of pH and dosage on pollutant removal and floc structure during coagulation[J]. Microchemical Journal, 2001, 68(2/3): 197-203.
|