[1] |
彭绍洪, 江李旺, 刘伟涛, 等. 反溶剂沉淀废旧电子塑料溶液过程中溴系阻燃剂的转移行为及分离[J]. 环境工程学报, 2016, 10(10): 5937-5942. doi: 10.12030/j.cjee.201604027
|
[2] |
GU J P, SU F, HONG P P, et al. 1H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line[J]. Science of the Total Environment, 2019, 665: 162-170. doi: 10.1016/j.scitotenv.2019.02.055
|
[3] |
TEO T L L, MCDONALD J A, COLEMAN H M, et al. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry[J]. Talanta, 2015, 143: 114-120. doi: 10.1016/j.talanta.2015.04.091
|
[4] |
WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38): 6705-6711. doi: 10.1016/j.chroma.2011.07.067
|
[5] |
PANG L, YUAN Y T, HE H, et al. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China[J]. Chemosphere, 2016, 152: 245-251. doi: 10.1016/j.chemosphere.2016.02.104
|
[6] |
杨扬. 有机磷酸酯(OPEs)对赤子爱胜蚓的毒性效应及机制研究[D]. 南京: 南京大学, 2018.
|
[7] |
DU Z, WANG G, GAO S, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators[J]. Aquatic Toxicology, 2015, 161: 25-32. doi: 10.1016/j.aquatox.2015.01.027
|
[8] |
WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio)[J]. Science of the Total Environment, 2016, 50(24): 13555-13564.
|
[9] |
HAO M J, GAO P, YANG D, et al. Highly efficient adsorption behavior and mechanism of urea-Fe3O4@LDH for triphenyl phosphate[J/OL]. [2020-02-14]. Environmental Pollution. https://www-sciencedirect-com.proxy.lib.utk.edu/science/article/pii/S0269749119339211.
|
[10] |
CHAI C C, LEE Z H, TOH P Y, et al. Effects of dissolved organic matter and suspended solids on the magnetophoretic separation of microalgal cells from an aqueous environment[J]. Chemical Engineering Journal, 2015, 281: 523-530. doi: 10.1016/j.cej.2015.06.108
|
[11] |
孙士权, 梁焱, 赵刚, 等. 粒径和底床地形对沉积物中有机磷释放的影响[J]. 环境工程学报, 2017, 11(3): 1605-1614. doi: 10.12030/j.cjee.201511033
|
[12] |
PRASERTKULSAK S, CHIEMCHAISRI C, CHIEMCHAISRI W, et al. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times[J]. Journal of Hazardous Materials, 2019, 368: 124-132. doi: 10.1016/j.jhazmat.2019.01.050
|
[13] |
刘乐, 丁一, 冯艳丽, 等. 纳米双氢氧化物对有机磷农药的吸附与降解[J]. 环境科学与技术, 2018, 41(11): 93-99.
|
[14] |
钱飞跃, 史梦婷, 王建芳, 等. 有机物性质对混凝-微滤-纳滤去除水中重金属的影响[J]. 环境工程学报, 2016, 10(7): 3634-3640. doi: 10.12030/j.cjee.201509052
|
[15] |
VÄÄRTNÕU M, LUST E. Adsorption of bromide ions at the Bi vertical bar gamma-valerolactone and Bi vertical bar propylene carbonate interfaces[J]. Journal of Electroanalytical Chemistry, 2019, 851: 113438. doi: 10.1016/j.jelechem.2019.113438
|
[16] |
NOH J S, SCHWARZ J A. Effect of HNO3 treatment on the surface acidity of activated carbons[J]. Carbon, 1990, 28: 675-682. doi: 10.1016/0008-6223(90)90069-B
|
[17] |
GAO P, SONG Y, HAO M J, et al. An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction[J]. Separation and Purification Technology, 2018, 201: 238-243. doi: 10.1016/j.seppur.2018.03.017
|
[18] |
SHEN M, HAI X, SHANG Y, et al. Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: Complex effects of cations with different molecular weight fractionated natural organic matter[J]. Science of the Total Environment, 2019, 656: 843-851. doi: 10.1016/j.scitotenv.2018.11.387
|
[19] |
WANG W, DENG S, LI D, et al. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons[J]. Chemical Engineering Journal, 2018, 332: 286-292. doi: 10.1016/j.cej.2017.09.085
|
[20] |
LAZAREVIC-PASTI T, ANICIJEVIC V, BALJOZOVIC M, et al. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water[J]. Environmental Science-Nano, 2018, 5(6): 1482-1494. doi: 10.1039/C8EN00171E
|
[21] |
李孟, 吴思, 张斌. 溶液环境对纳米Fe2O3/水界面NOM吸附过程中疏水效应的影响[J]. 环境工程学报, 2012, 6(6): 1817-1822.
|
[22] |
WANG W, DENG S, LI D, et al. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins[J]. Chemical Engineering Journal, 2018, 354: 105-112. doi: 10.1016/j.cej.2018.08.002
|
[23] |
PANG L, YANG P, YANG H, et al. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM)[J]. Science of the Total Environment, 2018, 626: 42-47. doi: 10.1016/j.scitotenv.2018.01.089
|
[24] |
WANG X L, SHU L, WANG Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Science of the Total Environment, 2011, 45(21): 9276-9283.
|
[25] |
WANG L, LI Y T, WENG L P, et al. Using chromatographic and spectroscopic parameters to characterize preference and kinetics in the adsorption of humic and fulvic acid to goethite[J]. Science of the Total Environment, 2019, 666: 766-777. doi: 10.1016/j.scitotenv.2019.02.235
|