-
苯酚是一种对环境有污染的芳香族有机化合物,广泛存在于石油炼制、木材防腐、焦化等行业的废水中[1]。苯酚属于高毒物质,可以通过皮肤、黏膜、口腔进入人体内,低浓度苯酚可使细胞蛋白变性,高浓度可使蛋白质沉淀[2]。此外,苯酚被证明有致癌、致突变、致畸性等危害,被世界各国列为重点处理的有机污染物之一[3]。含酚废水的处理方法可分为物化法和生物法。其中,物化法具有成本高、容易造成二次污染等缺点。相比之下,生物法具有环境友好、成本低、不产生二次污染等优点[4-5]。微生物能利用酚类化合物作为碳源或能源,并将其代谢转化,因此,细菌[6]、真菌[7]、藻类[8]等去除酚类化合物得到了广泛研究。
苯酚降解细菌大多具有繁殖速度快、苯酚耐受性强和降解效率高等特点,常用于苯酚废水处理,并取得了良好的效果。但其在处理过程中存在一些限制,如曝气成本高、产生CO2等温室气体及难处理的污泥等[9]。藻菌共培养对废水中污染物的去除更加有效,且具有以下优势:微藻通过光合作用产生异养细菌降解有机物所需的O2,较细菌处理技术节省了曝气成本并减少污染物的挥发;微藻吸收利用细菌呼吸作用降解有机物时释放的CO2,进而减少温室气体排放;获得的微藻生物质可进一步加工制备高附加值产品,提高经济效益[10-13]。RYU等[14]利用四尾栅藻和活性污泥处理焦化废水,发现藻菌共培养可于144 h内完全降解初始浓度为24~120 mg·L−1的苯酚,而单藻体系在144 h时最高的降解率仅为27.3%(初始苯酚浓度24 mg·L−1)。MAZA-MÁRQUEZ等[15]利用斜生栅藻和小球藻与酚类物质降解菌Raoultella terrigena和Pantoea agglomerans,构建菌藻共生体系,可在48 h内去除99%以上的苯酚(50、100、150 mg·L−1)。
尽管藻菌共培养处理苯酚废水较细菌具有一定优势,但目前处理的苯酚浓度仍然较低。高浓度苯酚会对微生物产生毒害作用、抑制其活性功能,从而影响了该技术的实际应用。同时,大多研究关注藻菌共培养对含酚废水的处理效果,而对处理过程中微藻生长的变化关注较少,但微藻生物质的获得对提高该技术的经济性具有重要作用。简单芽胞杆菌已被证明是一种高效苯酚降解菌。袁利娟等[16]分离出1株高效苯酚降解菌JY01,其16S rDNA序列与 Bacillus simplex (AM9216370)的相似性为99.01%,在苯酚浓度为1 100 mg·L−1和1 300 mg·L−1时,该菌株30 h内可分别降解99.16%和74.76%的苯酚。本研究旨在构建小球藻与简单芽胞杆菌的共培养体系用于高浓度苯酚废水处理,探索其处理高浓度苯酚废水和积累微藻生物质的潜力,研究藻菌比、藻菌接种浓度和苯酚浓度对共培养体系苯酚降解能力和微藻生长的影响,以期为藻菌共培养处理苯酚废水同时积累微藻生物质的进一步研究提供参考。
藻菌共培养对小球藻生长及苯酚降解的影响
Effect of algae-bacteria co-culture on Chlorella sp. growth and phenol degradation
-
摘要: 工业苯酚废水无序排放会对环境造成极大危害,构建既能去除苯酚又能积累微藻生物质的藻菌组合对实现苯酚废水净化及其资源化利用具有重要意义。首先,研究了小球藻对苯酚的耐受性和降解性能;然后,构建了其与简单芽胞杆菌Bacillus simplex的共培养体系;最后,测试了藻菌比、藻菌接种浓度和苯酚浓度等对小球藻生长及苯酚降解的影响。结果表明:小球藻能耐受400 mg·L−1的苯酚,但其对100~600 mg·L−1苯酚的降解率仅为1.21%~11.66%;对于藻菌共培养体系,在固定小球藻接种浓度为0.2 g·L−1、藻菌比为1∶4~4∶1条件下,3~5 d完全降解了400 mg·L−1的苯酚,小球藻叶绿素(a+b)含量较单藻组增加了0.14~2.21倍,且随着藻菌比降低,苯酚降解效率及小球藻生物量逐步提高;在固定藻菌比为1∶1、小球藻初始接种浓度为0.05~0.4 g·L−1条件下,4~5 d完全降解400 mg·L−1苯酚,且在藻接种浓度为0.2 g·L−1条件下,小球藻具有最高的比生长速率;在藻菌接种浓度0.2 g·L−1、藻菌比1∶1条件下,6 d内完全降解500 mg·L−1的苯酚,且在各苯酚浓度(200~600 mg·L−1)下,小球藻叶绿素(a+b)含量较初始接种值增加了1.54~4.71倍。与简单芽胞杆菌共培养可以促进小球藻生长并提高其苯酚降解能力,在苯酚废水净化及资源化利用领域展现了一定的应用潜力。Abstract: The discharge of industrial phenol wastewater has caused great harm to the environment. This study aims to construct one microalgae-bacteria consortium for simultaneous phenol removal and microalgae biomass accumulation, which has great significance for purification and resource utilization of phenol wastewater. Firstly, the tolerance and degradation performance of Chlorella sp. to phenol were investigated. Secondly, one consortium was constructed using Chlorella sp. and Bacillus simplex, and then the effects of microalgae to bacteria ratio, microalgae and bacteria inoculation concentrations and initial phenol concentration on phenol degradation and microalgae growth were investigated. The results showed that Chlorella sp. could tolerate 400 mg·L−1 phenol, while it only had degradation rates of 1.21%~11.66% for 100~600 mg·L−1 phenol. For the consortium with Chlorella sp. (0.2 g·L−1) to B. simple ratios ranging from 1∶4 to 4∶1, 400 mg·L−1 phenol was completely degraded within 3~5 d, and the contents of chlorophyll (a+b) increased by 0.14~2.21 times compared to Chlorella sp. Monoculture. The phenol degradation efficiency and microalgae biomass gradually increased with the decrease of Chlorella sp. to B. simplex ratio. For the consortium with fixed Chlorella sp. and B. simplex ratio of 1∶1, and Chlorella sp. inoculation concentrations of 0.05~0.4 g·L−1, 400 mg·L−1 phenol was completely degraded within 4~5 d, and the specific growth rate of Chlorella sp. was highest at the inoculation concentration of 0.2 g·L−1. For the consortium with fixed Chlorella sp. and B. simplex ratio of 1∶1, and Chlorella sp. inoculation concentrations of 0.2 g·L−1, 500 mg·L−1 phenol was completely degraded within 6 d. The content of chlorophyll (a+b) increased by 1.54 to 4.71 times compared to initial inoculation value at phenol concentrations of 200~600 mg·L−1. The above results show that the consortium could significantly improve phenol degradation efficiency and Chlorella sp. growth, and has a certain application potential in the field of phenol wastewater purification and resource utilization.
-
表 1 微藻和藻菌共培养处理苯酚废水的培养条件和研究结果的对比
Table 1. Comparison of culture conditions and research results on phenol wastewater treatment by microalgae alone and co-culture with bacteria
微生物 培养条件 结果 来源 Chlorella pyrenoidosa 添加苯酚(25~200 mg·L−1)为唯一碳源的Fog’s培养基;在实际炼化废水(23.33 mg·L−1苯酚)中培养 模拟废水中,6 d内完全降解苯酚;实际炼化废水中,7 d内降解了38.32%的苯酚 [31] Chlorella pyrenoidosa 煤气化排放废水(酚类化合物:1.475 g·L−1),微藻接种量4 g·L−1,添加与未添加营养物(K、尿素)进行比较 添加营养物时,7 d内降解了95%的苯酚;未添加营养物时,7 d内降解了46%的苯酚 [32] Chlorella sp. 小球藻(0.6 g·L−1)经过驯化,TAP培养基中添加苯酚至1 000 mg·L−1,分批培养 苯酚浓度为500 mg·L−1时,7 d内完全降解苯酚;700 mg·L−1时,8 d内降解了86%的苯酚 [33] Scenedesmus sp. BG11培养基中添加体积分数为9%的未灭菌橄榄油废水(苯酚浓度为440 mg·L−1),分批培养 苯酚浓度为440 mg·L−1,11 d内降解了22%的苯酚 [34] Scenedesmus quadricauda
与活性污泥共培养5个稀释度(20%~100%)的焦化废水(苯酚浓度,
24~120 mg·L−1),分批培养苯酚浓度≤96 mg·L−1时,94 h内苯酚完全降解;120 mg·L−1时,144 h内完全降解苯酚 [14] Scenedesmus obliquus、Chlorella vulgaris、Raoultella terrigena、Pantoea agglomerans 以苯酚(50、100、150 mg·L−1)为唯一碳源的模拟橄榄油废水,藻/菌(1012 cell·mL−1/103 CFU·mL−1) 苯酚浓度为50、100、150 mg·L−1时,
48 h内降解了99%的苯酚[15] Chlorella sp.、Bacillus simplex 以苯酚为唯一碳源的BG11培养基,初始藻菌比为1∶1(0.2 g·L−1∶0.2 g·L−1),苯酚浓度200~600 mg·L−1 苯酚浓度为400 mg·L−1时,4 d内苯酚完全降解;500 mg·L−1时,6 d内苯酚完全降解 本研究 -
[1] ARORA P K, BAE H. Bacterial degradation of chlorophenols and their derivatives[J]. Microbial Cell Factories, 2014, 13(1): 1-17. doi: 10.1186/1475-2859-13-1 [2] RUCKÁ L, NEŠVERA J, PÁTEK M, et al. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives[J]. World Journal of Microbiology and Biotechnology, 2017, 33(9): 1-8. doi: 10.1007/s11274-017-2339-x [3] KUMAR A, KUMAR S, KUMAR S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194[J]. Biochemical Engineering Journal, 2005, 22(2): 151-159. doi: 10.1016/j.bej.2004.09.006 [4] HONG J, YING F, YAO F, et al. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials, 2003, 101(2): 179-190. doi: 10.1016/S0304-3894(03)00176-6 [5] AZUBUIKE C C, CHIKERE C B, OKPOKWASILI G C. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects[J]. World Journal of Microbiology and Biotechnology, 2016, 32(11): 1-18. doi: 10.1007/s11274-016-2137-x [6] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3): 1215-1220. [7] ARANDA E. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi[J]. Current Opinion in Biotechnology, 2016, 38: 1-8. doi: 10.1016/j.copbio.2015.12.002 [8] GAO Q T, WONG Y S, TAM N F Y. Removal and biodegradation of nonylphenol by different Chlorella species[J]. Marine Pollution Bulletin, 2011, 63(5): 445-451. doi: 10.1016/j.marpolbul.2011.03.030 [9] PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae: A positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172. doi: 10.1016/j.biortech.2011.08.030 [10] 郭雪白, 杜志敏. 沼液中土著菌对斜生栅藻去除污染物效果的影响[J]. 环境工程学报, 2016, 10(7): 3943-3948. [11] SUBASHCHANDRABOSE S R, RAMAKRISHNAN B, MEGHARAJ M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation[J]. Environment International, 2013, 51: 59-72. doi: 10.1016/j.envint.2012.10.007 [12] MUÑOZ R, JACINTO M, GUIEYSSE B, et al. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors[J]. Applied Microbiology & Biotechnology, 2005, 67(5): 699-707. [13] 刘玉环, 史晓洁, 巫小丹, 等. 螺旋藻和菌-藻共生系统处理啤酒废水[J]. 环境工程学报, 2014, 8(1): 82-86. [14] RYU B G, KIM J, HAN J I, et al. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids[J]. Bioresource Technology, 2017, 225: 58-66. doi: 10.1016/j.biortech.2016.11.029 [15] MAZA-MÁRQUEZ P, MARTÍNEZ-TOLEDO M V, GONZÁLEZ-LÓPEZ J, et al. Biodegradation of olive washing wastewater pollutants by highly efficient phenol-degrading strains selected from adapted bacterial community[J]. International Biodeterioration & Biodegradation, 2013, 82: 192-198. [16] 袁利娟, 姜立春, 彭正松, 等. 一株高效苯酚降解菌的选育及降酚性能研究[J]. 微生物学通报, 2009, 36(4): 587-592. [17] STANIER R Y. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2): 171-205. doi: 10.1128/MMBR.35.2.171-205.1971 [18] WANG L, LIU J L, ZHAO Q Y, et al. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems[J]. Bioresource Technology, 2016, 211: 1-5. doi: 10.1016/j.biortech.2016.03.048 [19] GARCÍA-CAÑEDO J C, CRISTIANI-URBINA E, FLORES-ORTIZ C M, et al. Batch and fed-batch culture of Scenedesmus incrassatulus: Effect over biomass, carotenoid profile and concentration, photosynthetic efficiency and non-photochemical quenching[J]. Algal Research, 2016, 13: 41-52. doi: 10.1016/j.algal.2015.11.013 [20] PRUVOS J, VOOREN G V, GOUIC B L, et al. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application[J]. Bioresource Technology, 2011, 102(1): 150-158. doi: 10.1016/j.biortech.2010.06.153 [21] DASH A, BANERJEE R. Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: An integrated approach[J]. Bioresource Technology, 2017, 238: 502-509. doi: 10.1016/j.biortech.2017.04.039 [22] 中华人民共和国环境保护部. 水质挥发酚的测定4-氨基安替比林分光光度法: HJ 503-2009[S]. 北京: 中国环境科学出版社, 2009. [23] 任佳, 麻晓霞, 马玉龙, 等. 三种微藻与苯酚的相互作用研究[J]. 安徽农业科学, 2012, 40(20): 10560-10562. doi: 10.3969/j.issn.0517-6611.2012.20.069 [24] DUAN L Y, CHEN Q, DUAN S S. Transcriptional analysis of Chlorella pyrenoidosa exposed to bisphenol A[J]. International Journal of Environmental Research and Public Health, 2019, 16(8): 1-12. [25] CARDOZO K H M, OLIVEIRA M A L, TAVARES M F M, et al. Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate lingulodinium polyedrum[J]. Biological Rhythm Research, 2002, 33(4): 371-382. doi: 10.1076/brhm.33.4.371.8802 [26] SCRAGG A H. The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1[J]. Enzyme and Microbial Technology, 2006, 39(4): 796-799. doi: 10.1016/j.enzmictec.2005.12.018 [27] GUIEYSSE B, BORDE X, MUNOZ R, et al. Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture[J]. Biotechnology Letters, 2002, 24(7): 531-538. doi: 10.1023/A:1014847616212 [28] SU Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios[J]. Bioresource Technology, 2012, 105: 67-73. doi: 10.1016/j.biortech.2011.11.113 [29] CHENG T Y, ZHANG W, ZHANG W L, et al. An oleaginous filamentous microalgae Tribonema minus exhbits high removing potential of industrial phenol contaminants[J]. Bioresource Technology, 2017, 238: 749-754. doi: 10.1016/j.biortech.2017.05.040 [30] LEE H C, LEE M S, DEN W. Spirulina maxima for phenol removal: Study on its tolerance, biodegradability and phenol-carbon assimilability[J]. Water, Air and Soil Pollution, 2015, 226(12): 1-11. [31] DAS B, MANDAL T K, PATRA S. A comprehensive study on Chlorella pyrenoidosafor phenol degradation and its potential applicability as biodiesel feedstock and animal feed[J]. Applied Biochemistry and Biotechnology, 2015, 176(5): 1382-1401. doi: 10.1007/s12010-015-1652-9 [32] STEPHEN D P, AYALUR B K. Effect of nutrients on Chlorella pyrenoidosafor treatment of phenolic effluent of coal gasification plant[J]. Environmental Science and Pollution Research, 2017, 24(15): 13594-13603. doi: 10.1007/s11356-017-8891-y [33] WANG L B, XUE C Z, WANG L, et al. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution[J]. Bioresource Technology, 2016, 205: 264-268. doi: 10.1016/j.biortech.2016.01.022 [34] DICAPRIO F, ALTIMARI P, PAGNANELLI F. Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp.[J]. Algal Research, 2015, 9: 306-311. doi: 10.1016/j.algal.2015.04.007