[1] |
ARORA P K, BAE H. Bacterial degradation of chlorophenols and their derivatives[J]. Microbial Cell Factories, 2014, 13(1): 1-17. doi: 10.1186/1475-2859-13-1
|
[2] |
RUCKÁ L, NEŠVERA J, PÁTEK M, et al. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives[J]. World Journal of Microbiology and Biotechnology, 2017, 33(9): 1-8. doi: 10.1007/s11274-017-2339-x
|
[3] |
KUMAR A, KUMAR S, KUMAR S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194[J]. Biochemical Engineering Journal, 2005, 22(2): 151-159. doi: 10.1016/j.bej.2004.09.006
|
[4] |
HONG J, YING F, YAO F, et al. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials, 2003, 101(2): 179-190. doi: 10.1016/S0304-3894(03)00176-6
|
[5] |
AZUBUIKE C C, CHIKERE C B, OKPOKWASILI G C. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects[J]. World Journal of Microbiology and Biotechnology, 2016, 32(11): 1-18. doi: 10.1007/s11274-016-2137-x
|
[6] |
于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3): 1215-1220.
|
[7] |
ARANDA E. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi[J]. Current Opinion in Biotechnology, 2016, 38: 1-8. doi: 10.1016/j.copbio.2015.12.002
|
[8] |
GAO Q T, WONG Y S, TAM N F Y. Removal and biodegradation of nonylphenol by different Chlorella species[J]. Marine Pollution Bulletin, 2011, 63(5): 445-451. doi: 10.1016/j.marpolbul.2011.03.030
|
[9] |
PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae: A positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172. doi: 10.1016/j.biortech.2011.08.030
|
[10] |
郭雪白, 杜志敏. 沼液中土著菌对斜生栅藻去除污染物效果的影响[J]. 环境工程学报, 2016, 10(7): 3943-3948.
|
[11] |
SUBASHCHANDRABOSE S R, RAMAKRISHNAN B, MEGHARAJ M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation[J]. Environment International, 2013, 51: 59-72. doi: 10.1016/j.envint.2012.10.007
|
[12] |
MUÑOZ R, JACINTO M, GUIEYSSE B, et al. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors[J]. Applied Microbiology & Biotechnology, 2005, 67(5): 699-707.
|
[13] |
刘玉环, 史晓洁, 巫小丹, 等. 螺旋藻和菌-藻共生系统处理啤酒废水[J]. 环境工程学报, 2014, 8(1): 82-86.
|
[14] |
RYU B G, KIM J, HAN J I, et al. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids[J]. Bioresource Technology, 2017, 225: 58-66. doi: 10.1016/j.biortech.2016.11.029
|
[15] |
MAZA-MÁRQUEZ P, MARTÍNEZ-TOLEDO M V, GONZÁLEZ-LÓPEZ J, et al. Biodegradation of olive washing wastewater pollutants by highly efficient phenol-degrading strains selected from adapted bacterial community[J]. International Biodeterioration & Biodegradation, 2013, 82: 192-198.
|
[16] |
袁利娟, 姜立春, 彭正松, 等. 一株高效苯酚降解菌的选育及降酚性能研究[J]. 微生物学通报, 2009, 36(4): 587-592.
|
[17] |
STANIER R Y. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2): 171-205. doi: 10.1128/MMBR.35.2.171-205.1971
|
[18] |
WANG L, LIU J L, ZHAO Q Y, et al. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems[J]. Bioresource Technology, 2016, 211: 1-5. doi: 10.1016/j.biortech.2016.03.048
|
[19] |
GARCÍA-CAÑEDO J C, CRISTIANI-URBINA E, FLORES-ORTIZ C M, et al. Batch and fed-batch culture of Scenedesmus incrassatulus: Effect over biomass, carotenoid profile and concentration, photosynthetic efficiency and non-photochemical quenching[J]. Algal Research, 2016, 13: 41-52. doi: 10.1016/j.algal.2015.11.013
|
[20] |
PRUVOS J, VOOREN G V, GOUIC B L, et al. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application[J]. Bioresource Technology, 2011, 102(1): 150-158. doi: 10.1016/j.biortech.2010.06.153
|
[21] |
DASH A, BANERJEE R. Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: An integrated approach[J]. Bioresource Technology, 2017, 238: 502-509. doi: 10.1016/j.biortech.2017.04.039
|
[22] |
中华人民共和国环境保护部. 水质挥发酚的测定4-氨基安替比林分光光度法: HJ 503-2009[S]. 北京: 中国环境科学出版社, 2009.
|
[23] |
任佳, 麻晓霞, 马玉龙, 等. 三种微藻与苯酚的相互作用研究[J]. 安徽农业科学, 2012, 40(20): 10560-10562. doi: 10.3969/j.issn.0517-6611.2012.20.069
|
[24] |
DUAN L Y, CHEN Q, DUAN S S. Transcriptional analysis of Chlorella pyrenoidosa exposed to bisphenol A[J]. International Journal of Environmental Research and Public Health, 2019, 16(8): 1-12.
|
[25] |
CARDOZO K H M, OLIVEIRA M A L, TAVARES M F M, et al. Daily oscillation of fatty acids and malondialdehyde in the dinoflagellate lingulodinium polyedrum[J]. Biological Rhythm Research, 2002, 33(4): 371-382. doi: 10.1076/brhm.33.4.371.8802
|
[26] |
SCRAGG A H. The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1[J]. Enzyme and Microbial Technology, 2006, 39(4): 796-799. doi: 10.1016/j.enzmictec.2005.12.018
|
[27] |
GUIEYSSE B, BORDE X, MUNOZ R, et al. Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture[J]. Biotechnology Letters, 2002, 24(7): 531-538. doi: 10.1023/A:1014847616212
|
[28] |
SU Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios[J]. Bioresource Technology, 2012, 105: 67-73. doi: 10.1016/j.biortech.2011.11.113
|
[29] |
CHENG T Y, ZHANG W, ZHANG W L, et al. An oleaginous filamentous microalgae Tribonema minus exhbits high removing potential of industrial phenol contaminants[J]. Bioresource Technology, 2017, 238: 749-754. doi: 10.1016/j.biortech.2017.05.040
|
[30] |
LEE H C, LEE M S, DEN W. Spirulina maxima for phenol removal: Study on its tolerance, biodegradability and phenol-carbon assimilability[J]. Water, Air and Soil Pollution, 2015, 226(12): 1-11.
|
[31] |
DAS B, MANDAL T K, PATRA S. A comprehensive study on Chlorella pyrenoidosafor phenol degradation and its potential applicability as biodiesel feedstock and animal feed[J]. Applied Biochemistry and Biotechnology, 2015, 176(5): 1382-1401. doi: 10.1007/s12010-015-1652-9
|
[32] |
STEPHEN D P, AYALUR B K. Effect of nutrients on Chlorella pyrenoidosafor treatment of phenolic effluent of coal gasification plant[J]. Environmental Science and Pollution Research, 2017, 24(15): 13594-13603. doi: 10.1007/s11356-017-8891-y
|
[33] |
WANG L B, XUE C Z, WANG L, et al. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution[J]. Bioresource Technology, 2016, 205: 264-268. doi: 10.1016/j.biortech.2016.01.022
|
[34] |
DICAPRIO F, ALTIMARI P, PAGNANELLI F. Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp.[J]. Algal Research, 2015, 9: 306-311. doi: 10.1016/j.algal.2015.04.007
|