-
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类持久性有机污染物,具有致癌、致畸、致突变的特性[1]。近代工业的快速发展导致大量PAHs排放至环境,经大气湿沉降、污水灌溉等途径最终汇聚于土壤,这导致了严重的PAHs污染土壤问题,对人类健康及生态环境构成了巨大威胁[2]。目前,土壤PAHs污染修复已成为国内外面临的亟待解决的问题之一。
微生物修复技术具有经济高效、绿色环保等优点,是目前PAHs污染修复的主要方法之一[3],而获得具有PAHs降解能力的微生物是微生物修复技术成功与否的前提[4]。许多研究筛选探究了对PAHs有分解代谢能力并可显著修复PAHs污染的降解菌及其降解特性,用于发展微生物修复技术[5]。黄兴如等[6]筛选分离出一株能以菲、芘为唯一碳源的菌株Rhizobium petrolearium。许晓毅等[7]筛选出的黄杆菌属(Flavobacterium sp.)和克雷伯氏杆菌属(Klebsiella sp.)能高效降解菲和荧蒽。目前,已有研究中涉及的降解菌只能降解一种或几种PAHs,可降解底物种类有限[8-9]。而污染土壤中的PAHs多以混合形式存在,各种PAHs单体之间会相互影响,从而增加微生物降解的难度[10]。虽已有一些针对PAHs降解菌展开的研究,但是针对具有降解广谱性,能以多种高环PAHs为唯一碳源生长代谢,可修复混合PAHs污染的降解菌研究仍然较少。因此,筛选具有降解广谱性、尤其对高环PAHs具有高效降解能力,可有效修复土壤混合PAHs污染的降解菌具有重要意义。
本研究采用富集分离法从北京某焦化厂PAHs污染土壤中分离筛选出一株具有降解广谱性且能以多种高环PAHs为唯一碳源的菌株,通过观察其形态以及借助分子生物学等手段对该菌株进行了鉴定;并系统研究了该菌株的生长特性及其对单一和混合PAHs的降解能力;同时,在实验室条件下考察了降解菌投加对野外PAHs污染土壤的强化修复潜力。研究工作可为PAHs污染土壤微生物修复技术发展提供一定的科技支撑。
一株多环芳烃降解菌的筛选及其降解特性
Screening and degradation characteristics of a PAHs-degrading bacteria
-
摘要: 微生物修复是治理土壤多环芳烃(polycyclic aromatic hydrocarbons, PAHs)污染的主要方法,而高效降解菌筛选是微生物修复技术的重要基础。从北京焦化厂土壤中筛选分离得到一株PAHs降解菌Q3,通过生理生化和16S rDNA等分析手段鉴定其为Rhodococcus rhodochrous。结果表明:该菌株对芘的耐受能力较强,可降解初始浓度为200 mg·L−1的芘;该菌株具有降解广谱性,可利用苯并[a]芘、苯并[b]荧蒽、二苯并[a,h]蒽、苯并[g,h,i]苝等9种PAHs为唯一碳源进行代谢,特别是对苯并[a]芘等高环PAHs具有较好的降解效果;此外,该菌株可有效降解模拟液中的混合PAHs,并且对野外被PAHs长期污染的土壤具有较好的强化修复效果。投加菌株处理后的处理组与对照组相比,土壤PAHs总去除率提高了24%。以上结果表明该菌株对环境中被PAHs污染的土壤具有较好的强化修复潜力,可为PAHs污染土壤的微生物修复技术提供技术参考。Abstract: Microbial remediation is the main way to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated soil. It is essential to screen highly efficient degrading bacteria for bioremediation of PAHs-contaminated environment. A PAHs-degrading strain Q3 was isolated from PAHs contaminated soil in Beijing Coking Plant and identified as Rhodococcus rhodochrous by biochemical analysis and 16S rDNA sequence. The results showed the strain Q3 could tolerate pyrene, and could degrade it with initial concentration up to 200 mg·L−1 in liquid medium. Meanwhile, Q3 showed broad-spectra property for PAHs degradation, and could use nine individual PAHs, including phenanthrene, pyrene, benzoanthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenzo[a, h]anthracene or benzo[g, h, i]perylene, as sole carbon source to perform metabolism. Especially for PAHs with high-ring structures, such as benzo[a]pyrene, a relatively high degradation capacity also occurred. In addition, the strain Q3 could effectively degrade the mixed PAHs in the simulated solution, and had a good effect on enhancing remediation for long-term PAHs contaminated soil. The PAHs removal rate in treatment group increased by 24% compared with the control group. The results can provide a technical reference for the bioremediation technology of PAHs contaminated soil.
-
Key words:
- PAHs /
- degradation bacteria /
- screening /
- degradation characteristics /
- soil remediation
-
表 1 供试土壤中PAHs含量
Table 1. PAHs concentrations in test soils
多环芳烃 缩写 环数 浓度/(mg·kg−1) 萘 NAP 2 1.89±0.27 苊烯 ANY 2 0.44±0.15 苊 ANA 3 2.74±0.37 芴 FLU 3 1.58±0.29 菲 PHE 3 8.99±1.73 蒽 ANT 3 1.88±0.26 荧蒽 FLT 4 21.91±3.87 芘 PYR 4 22.46±2.61 苯并蒽 BaA 4 20.78±2.67 䓛 CHR 4 23.52±3.35 苯并[b]荧蒽 BbF 5 31.87±4.43 苯并[k]荧蒽 BkF 5 14.91±2.05 苯并[a]芘 BaP 5 32.05±3.67 茚并[1,2,3-cd]芘 ICP 6 7.36±0.76 二苯并[a,h]蒽 DBA 6 36.03±3.11 苯并[g,h,i]苝 BPE 6 27.07±2.03 ∑16 PAHs 255.47±22.46 表 2 生理生化测试结果
Table 2. Results of physiological and biochemical test
项目 Q3 空白对照 革兰氏染色 + − 芽孢染色 − − 接触酶实验 + − 明胶水解实验 − − 硫化氢实验 − − 吲哚产生 − − 8% NaCl + − 脲酶实验 − − 注:“+”表示反应为阳性;“−”表示反应为阴性。 表 3 菌株Q3降解广谱性
Table 3. Broad-spectra property of degradation by strain Q3
PAHs 初始浓度50 mg·L−1
第8天的降解率/%初始浓度10 mg·L−1
第16天的降解率/%菲 98.12±2.7 — 芘 46.54±12.78 — 苯并蒽 35.13±2.92 — 䓛 15.07±4.80 — 苯并[a]芘 64.73±9.40 — 苯并[b]荧蒽 0 21.32±1.03 苯并[k]荧蒽 0 36.75±7.79 二苯并[a,h]蒽 0 82.43±3.85 苯并[g,h,i]苝 0 48.95±4.45 -
[1] LOMZA P, POSZYTEK K, SKLODOWSKA A, et al. Evaluation of bioremediation of soil highly contaminated by petroleum hydrocarbons[J]. New Biotechnology, 2016, 141(33): 14-28. [2] 熊丽君, 吴杰, 王敏. 交通道路沿线土壤多环芳烃污染及风险防控综述[J]. 生态环境学报, 2018, 27(5): 974-982. [3] 周际海, 袁颖红, 朱志保, 等. 土壤有机污染物生物修复技术研究进展[J]. 生态环境学报, 2015, 24(2): 343-351. [4] 吴作军, 卢滇楠, 张敏莲, 等. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望[J]. 化工进展, 2010, 30(5): 789-795. [5] 吴枭雄, 王红旗, 刘自力. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 环境与发展, 2018, 30(7): 108-109. [6] 黄兴如, 张彩文, 张瑞杰, 等. 多环芳烃降解菌的筛选、鉴定及降解特性[J]. 微生物学通报, 2016, 43(5): 965-973. [7] 许晓毅, 苏攀, 姬宇, 等. 沉积物中2株多环芳烃降解菌的分离鉴定及其对菲、荧蒽的降解特性[J]. 环境工程学报, 2015, 9(3): 1513-1520. doi: 10.12030/j.cjee.20150386 [8] 田晶, 徐小琳, 康彦顺, 等. 广谱性多环芳烃降解真菌Aspergillus flavus AD-X-1的筛选及其性能研究[J]. 生物技术通报, 2018, 34(8): 115-122. [9] 杨轩, 张威, 李师翁, 等. 多环芳烃降解菌的分离鉴定及其生理特性研究[J]. 环境科学学报, 2012, 32(5): 1033-1040. [10] CRAMPON M, BUREAU F, AKPA-VINCESLAS M, et al. Correlations between PAH bioavailability degrading bacteria and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils[J]. Environmental Science and Pollution Research, 2014, 21(13): 8133-8145. [11] ALLEY J F, BROWN L R. Use of sublimation to prepare solid microbial media with water-insoluble substrates[J]. Applied Environmental Microbiology, 2000, 66(1): 439-442. doi: 10.1128/AEM.66.1.439-442.2000 [12] PING L F, ZHANG C R, ZHU Y H, et al. Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2[J]. Biotechnology and Bioprocess Engineering, 2011, 16: 1000-1008. doi: 10.1007/s12257-010-0435-y [13] 环境保护部. 水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法: HJ 478-2009[S]. 北京: 中国环境科学出版社, 2009. [14] 范瑞娟, 刘雅琴, 张琇. 嗜盐碱高环PAHs降解菌的分离及其降解特性研究[J]. 农业环境科学学报, 2019, 38(6): 1280-1287. doi: 10.11654/jaes.2018-1023 [15] 陈燕飞. pH对微生物的影响[J]. 太原师范学院学报(自然科学版), 2009, 8(3): 121-124. doi: 10.3969/j.issn.1672-2027.2009.03.032 [16] 赵百锁, 王慧, 毛心慰. 嗜盐微生物在环境修复中的研究进展[J]. 微生物学通报, 2007, 34(6): 1209-1212. doi: 10.3969/j.issn.0253-2654.2007.06.038 [17] 顾平, 周启星, 王鑫, 等. 一株土著B[a]P降解菌的筛选及降解特性研究[J]. 农业环境科学学报, 2018, 37(5): 926-932. doi: 10.11654/jaes.2017-0954 [18] 卫昆, 陈烁娜, 尹华, 等. 蜡状芽胞杆菌对芘的降解特性及降解酶研究[J]. 环境科学学报, 2016, 36(2): 506-512. [19] RAVELET C, KRIVOBOK S, SAGE L, et al. Biodegradation of pyrene by sediment fungi[J]. Chemosphere, 2000, 40(5): 557-563. doi: 10.1016/S0045-6535(99)00320-3 [20] 毛健, 骆永明, 滕应, 等. 一株高分子量多环芳烃降解菌的筛选、鉴定及降解特性研究[J]. 微生物学通报, 2008, 35(7): 1011-1015. doi: 10.3969/j.issn.0253-2654.2008.07.003 [21] 王春明, 李大平, 王春莲. 微杆菌3-28对萘、菲、蒽、芘的降解[J]. 应用与环境生物学报, 2009, 15(3): 361-366. [22] 杜彦玲, 台培东, 施秋峰, 等. 多环芳烃降解菌X20的鉴定及降解特性[J]. 生态学杂志, 2010, 29(6): 1208-1212. [23] SORKHOH N A, GHANNOUM M A, IBRAHIM A S, et al. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait[J]. Environmental Pollution, 1990, 65(1): 1-17. doi: 10.1016/0269-7491(90)90162-6 [24] HIROYUKI H, HIROYASU S, IKUO S, et al. High cell density culture of Rhodococcus rhodochrous by pH-stat feeding and dibenzothiophene degradation[J]. Journal of Fermentation and Bioengineering, 1998, 85(3): 334-338. doi: 10.1016/S0922-338X(97)85685-1 [25] HELEN C, ORLA F, MICHAEL J L, et al. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064[J]. Microbiology, 1994, 140(6): 1433-1442. doi: 10.1099/00221287-140-6-1433 [26] SONG X H, XU Y, LI G M, et al. Isolation, characterization of Phodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons[J]. Marine Pollution Bulletin, 2011, 62(10): 2122-2128. doi: 10.1016/j.marpolbul.2011.07.013 [27] 刁硕, 王红旗, 许洁, 等. 低温耐盐芘降解菌的筛选鉴定及降解特性研究[J]. 中国环境科学, 2017, 37(2): 677-685. [28] WALTER U, BEYER M, KLEIN J, et al. Degradation of pyrene by Rhodococcus sp. UW1[J]. Applied Microbiology and Biotechnology, 1991, 34(5): 671-676. doi: 10.1007/BF00167921 [29] 丁克强, 骆永明, 刘世亮, 等. 多环芳烃菲对淹水土壤微生物动态变化的影响[J]. 土壤, 2002, 45(4): 229-236. doi: 10.3321/j.issn:0253-9829.2002.04.012 [30] 卢晓霞, 李秀利, 马杰, 等. 焦化厂多环芳烃污染土壤的强化微生物修复研究[J]. 环境科学, 2011, 32(3): 864-869. [31] ANNE H B, BARBARA B H. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petrolirm-contaminated sites[J]. Applied Environment Microbiology, 1992, 58(8): 2579-2582. doi: 10.1128/AEM.58.8.2579-2582.1992 [32] 唐婷婷, 金卫根. 多环芳烃微生物降解机理研究进展[J]. 土壤, 2010, 42(6): 876-881. [33] 张杰, 刘永生, 孟玲, 等. 多环芳烃降解菌筛选及其降解特性[J]. 应用生态学报, 2003, 14(10): 1783-1786. doi: 10.3321/j.issn:1001-9332.2003.10.043 [34] CHEN S H, AITKEN M D. Salicylate stimulates the degradation of high molecular weitht polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15[J]. Environmental Science and Technology, 1999, 33(3): 435-439. doi: 10.1021/es9805730 [35] GHAZALI F M, RAHMAN R N Z A, SALLEH A B, et al. Biodegradation of hydrocarbons in soil by microbial consortium[J]. International Biodeterioration & Biodegradation, 2004, 54(1): 61-67. [36] JAMES E B, DOUGLAS G C. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries[J]. Applied Environment Microbiology, 1988, 54(7): 1649-1655. doi: 10.1128/AEM.54.7.1649-1655.1988 [37] 巩宗强, 李培军, 王新, 等. 芘在土壤中的共代谢降解研究[J]. 应用生态学报, 2001, 12(3): 447-450. doi: 10.3321/j.issn:1001-9332.2001.03.031 [38] ZHONG Y, ZOU S C, LIN L, et al. Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments[J]. Marine Pollution Bulletin, 2010, 60(11): 2043-2049. doi: 10.1016/j.marpolbul.2010.07.017 [39] FENG P, YANG Q X, ZHANG Y, et al. Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala[J]. Biotechnology Letters, 2004, 26(10): 803-806. doi: 10.1023/B:BILE.0000025882.33234.91 [40] 李政, 顾贵洲, 赵朝成, 等. 高相对分子质量多环芳烃的生物共代谢降解[J]. 石油学报, 2015, 31(3): 720-725. [41] 杜丽娜, 高大文. 青顶拟多孔菌对单一和复合多环芳烃的降解特性[J]. 中国环境科学, 2011, 31(2): 277-282. [42] 陈瑞蕊, 林先贵, 尹睿, 等. 有机污染土壤中菌根的作用[J]. 生态学杂志, 2005, 24(2): 176-180. doi: 10.3321/j.issn:1000-4890.2005.02.012 [43] 王聪颖, 王芳, 王涛, 等. 生物强化和生物刺激对土壤中PAHs降解的影响[J]. 中国环境科学, 2010, 30(1): 121-127. [44] 王菲, 苏振成, 杨辉, 等. 土壤中多环芳烃的微生物降解及土壤细菌种群多样性[J]. 应用生态学报, 2009, 20(12): 3020-3026.