-
折流湿地是在传统的人工湿地基础上加入隔板,以减缓水流速度,增加污水的停留时间,提高湿地的利用率,其原理是通过植物、填料、土壤和微生物的协同作用来降低污水中的污染物浓度,具有投资低、耗能低等特点[1-2]。目前,人工湿地污水中氨氮的去除主要靠填料的吸附、氨挥发和微生物的硝化等作用[3-5];磷的去除主要是聚磷菌的同化和填料的吸附作用[6-7],因此,人工湿地填料的选择是至关重要的。
在我国西北地区,由于其低温期较长,污水的降解主要靠填料吸附去除,因此,水力停留时间和填料吸附作用是决定湿地对污染物去除的关键因素[8]。生物炭已经作为一种多功能的环保材料广泛地应用于污水处理系统中,如SUN等[9]将生物炭和污泥应用于间歇曝气地下污水渗滤系统,实现13.5%总氮去除效果的提升;也有学者[10-11]将生物炭应用于垂直人工湿地表面,提高了系统的脱氮性能;但是将生物炭直接应用于潜流人工湿地填料的研究较少。此外,混凝土渣是建筑工地中常见的固体废物,如何将其再利用成为研究的难点。
本研究结合西北地区温度特征,就地取材,以砾石、混凝土渣和生物炭为湿地填料,分别构建了3组折流湿地,对比了3种填料对各污染物的去除效果和微生物的降解过程,并采用一级反应动力学模型拟合了折流湿地对生活污水中各种污染物随时间变化的降解过程,筛选出较优的折流湿地填料,可为西北地区农村分散式生活污水处理和人工湿地的设计提供参考。
不同填料在折流湿地中脱氮除磷的动力学分析
Kinetic analysis of nitrogen and phosphorus removal by different fillers in a baffled wetland
-
摘要: 为了解决我国西部农村分散式生活污水污染问题,结合西北地区年平均气温条件特征,基于潜流湿地原理对比研究了混凝土渣、砾石和生物炭脱氮除磷效应,分析其对污染物的降解作用。结果表明:随着水力停留时间(HRT)的延长,污染物含量明显降低,湿地最佳HRT均为2.5 d,3种填料湿地对化学需要量(COD)、氨氮(
${ {\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ -N)、磷酸盐(${ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}}$ -P)的去除效果差异性显著(P<0.01);混凝土渣对污水中${ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}}$ -P的去除最优,去除率为97.11%;生物炭综合处理能力较强,COD、${ {\rm{NH}}_{\rm{4}}^{\rm{ + }}}$ -N、悬浮物(SS)的去除率达到了90.51%、72.38%、94.57%;生物炭作为优选湿地填料还具有较快的污染物降解速率特征,且有机污染物和磷酸盐的生化降解过程符合一级反应动力学模型,R2在0.9以上。因此,生物炭作为湿地填料具有良好的应用价值,对解决西北地区农村水污染问题具有重要的意义。Abstract: In order to solve the pollution problem of decentralized domestic sewage in the rural area of western China, in combination with the characteristics of annual mean temperature in Northwest China, this study compared the nitrogen and phosphorus removal effects of concrete slag, gravel and biochar based on the principle of subsurface flow wetland(SFW), and the pollutants degradation effect of SFW was also analyzed. The results showed that with the increase of hydraulic retention time (HRT), the pollutant concentration decreased significantly, and the optimum HRT of the wetland was 2.5 d. The differences in the removal of chemical oxygen demand (COD), ammonia nitrogen ($ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N), and phosphorus ($ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}$ -P) among three kinds of fillers were very significant (P<0.01), of which the$ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}$ -P removal from sewage by concrete slag was the highest with the removal rate of 97.11%. Biochar had the strongest comprehensive treatment ability, its removal rates for COD,$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N and suspended matter (SS) were 90.51%, 72.38% and 94.57%, respectively, as the optimal wetland filler, it also showed the fast degradation rate of pollutants, and the corresponding biochemical degradation process of organic contaminant and phosphate accorded with the first-order reaction kinetics model with R2 above 0.9. Therefore, biochar has good application value when it is taken as the wetland filler, and is of great significance to solve rural water pollution questions in Northwest China.-
Key words:
- baffled wetland /
- packing /
- hydraulic retention time /
- kinetic model
-
表 1 填料的物理性质
Table 1. Physical properties of fillers
填料类型 比表面积/(m2·g−1) 孔隙率/% 渗透系数/(cm·s−1) 砾石 6.841 2 42.710 0 0.366 4 混凝土渣 7.122 1 45.700 0 0.213 8 生物炭 18.630 4 53.210 0 0.086 2 表 2 折流湿地去除污染物的一级动力学方程
Table 2. First-order kinetic equation for pollutant removal from baffle wetlands
污染物 填料类型 方程式 R2 COD 砾石湿地 y=−0.1 22 4x−0.756 0 0.723 2 混凝土渣湿地 y=−0.119 0x−0.356 0 0.818 8 生物炭湿地 y=−0.248 6x−1.521 0 0.949 2 $ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}$ -P砾石湿地 y=−0.031 3x−0.469 8 0.788 7 混凝土渣湿地 y=−0.216 3x−2.742 0 0.821 5 生物炭湿地 y=−0.202 7x−1.733 0 0.917 2 $ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -N砾石湿地 y=−0.0437x−0.183 6 0.632 6 混凝土渣湿地 y=−0.069 6x−0.199 4 0.835 8 生物炭湿地 y=−0.096 2x−0.861 7 0.821 8 SS 砾石湿地 y=−0.140 4x−1.589 0.725 0 混凝土渣湿地 y=−0.098 0x−1.825 0.553 1 生物炭湿地 y=−0.1115x−2.503 0 0.704 2 注:y表示ln (Ce/C0),x表示污水在模型中停留的时间。 表 3 生活污水中污染物的去除一级动力学速率常数kv
Table 3. First-order kinetic rate constant kv for pollutant removal from domestic sewage
d−1 填料类型 COD $ {\rm{PO}}_{\rm{4}}^{{\rm{3 - }}}$ -P$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ -NSS 砾石湿地 0.497 1 0.230 3 0.164 4 0.898 8 混凝土渣湿地 0.224 5 1.417 0 0.204 7 0.867 6 生物炭湿地 0.792 0 0.866 0 0.514 6 1.165 4 -
[1] LI H, CHI Z, YAN B, et al. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: Impact of matrix arrangement and intermittent aeration[J]. Environmental Science and Pollution Research, 2017, 24(5): 5032-5038. doi: 10.1007/s11356-016-8227-3 [2] LU S, GAO X, WU P, et al. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels[J]. Journal of Cleaner Production, 2018, 208: 649-655. [3] LIU J, XIE X, ZHANG Y, et al. Experimental study on treatment of rural domestic sewage by four substrates anaerobic baffled reactor-vertical flow wetlands(ABR-VFW)[J]. Journal of Agro-Environment Science, 2018, 37(8): 1758-1766. [4] DING X, XUE Y, ZHAO Y, et al. Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands[J]. Journal of Cleaner Production, 2018, 172: 541-551. doi: 10.1016/j.jclepro.2017.10.170 [5] HU Y, HE F, MA L, et al. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems[J]. Bioresource Technology, 2016, 207: 339-345. doi: 10.1016/j.biortech.2016.01.106 [6] RUBIO I B, MOLLE P, LUIS E, et al. Basic oxygen furnace steel slag aggregates for phosphorus treatment. evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research, 2015, 89: 355-365. [7] TIAN J, YU C, LIU J, et al. Performance of an ultraviolet mutagenetic polyphosphate-accumulating bacterium PZ2 and its application for wastewater treatment in a newly designed constructed wetland[J]. Applied Biochemistry and Biotechnology, 2017, 181(2): 735-747. doi: 10.1007/s12010-016-2245-y [8] YE C, LI L, ZHANG J, et al. Study on ABR stage-constructed wetland integrated system in treatment of rural sewage[J]. Procedia Environmental Sciences, 2012, 12: 687-692. [9] SUN Y F, QI S Y, ZHENG F P, et al. Organics removal nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2018, 249: 57-61. doi: 10.1016/j.biortech.2017.10.004 [10] ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar amended substrate vertical flow constructed wetland for low C/N wastewater treatment: impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044 [11] 袁敏, 刘晓冰, 唐美珍, 等. 生物炭固定菌强化人工湿地对低温污水中氮素去除的模拟研究[J]. 生态与农村环境学报, 2018, 34(5): 463-468. doi: 10.11934/j.issn.1673-4831.2018.05.011 [12] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3): 49-52. [13] 方伟成, 王静, 周新萍. 3种填料吸附磷的特性及其影响因素[J]. 湿地科学, 2018, 16(3): 341-356. [14] 王功, 魏东洋, 方晓航, 等. 3种湿地填料对水体中氮磷的吸附特性研究[J]. 环境污染与防治, 2012, 34(11): 9-13. doi: 10.3969/j.issn.1001-3865.2012.11.003 [15] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8): 1187-1194. [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] SAEED T, SUN G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands[J]. Water Research, 2011, 45(10): 3152. [18] ZHANG S, YANG X L, LI H, et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J]. Bioresource Technology, 2017, 244(1): 345-352. [19] 唐美珍, 汪文飞, 李如如, 等. 生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J]. 环境科学学报, 2017, 37(9): 3442-3448. [20] DING W, XIAN Y, TAO L, et al. A research on purification effect of the substrate of constructed wetlands with FS-G-CD-S-SS model on phosphorus pollution[J]. Procedia Environmental Sciences, 2011, 10: 2645-2653. [21] PARK J H, WANG J J, KIM S H, et al. Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag[J]. Chemical Engineering Journal, 2017, 327: 713-724. doi: 10.1016/j.cej.2017.06.155 [22] LI J, HU Z, LI F, et al. Effect of oxygen supply strategy on nitrogen removal of biochar-based vertical subsurface flow constructed wetland: Intermittent aeration and tidal flow[J]. Chemosphere, 2019, 223: 366-374. doi: 10.1016/j.chemosphere.2019.02.082 [23] TANG J H, LUO W Z, YANG B, et al. Optimization of planting concrete materials with nitrogen and phosphorus removal characteristic[J]. Materials Science and Engineering, 2018, 382: 022100. [24] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 115-121. [25] MAO X, CAO Z, YIN Y, et al. Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10341-10350. doi: 10.1016/j.ijhydene.2018.04.100 [26] TANG X Y, YANG Y, MURRAY B, et al. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with fifive wetland plant species[J]. Chemosphere, 2019, 216: 195-202. doi: 10.1016/j.chemosphere.2018.10.150