[1] LI H, CHI Z, YAN B, et al. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: Impact of matrix arrangement and intermittent aeration[J]. Environmental Science and Pollution Research, 2017, 24(5): 5032-5038. doi: 10.1007/s11356-016-8227-3
[2] LU S, GAO X, WU P, et al. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels[J]. Journal of Cleaner Production, 2018, 208: 649-655.
[3] LIU J, XIE X, ZHANG Y, et al. Experimental study on treatment of rural domestic sewage by four substrates anaerobic baffled reactor-vertical flow wetlands(ABR-VFW)[J]. Journal of Agro-Environment Science, 2018, 37(8): 1758-1766.
[4] DING X, XUE Y, ZHAO Y, et al. Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands[J]. Journal of Cleaner Production, 2018, 172: 541-551. doi: 10.1016/j.jclepro.2017.10.170
[5] HU Y, HE F, MA L, et al. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems[J]. Bioresource Technology, 2016, 207: 339-345. doi: 10.1016/j.biortech.2016.01.106
[6] RUBIO I B, MOLLE P, LUIS E, et al. Basic oxygen furnace steel slag aggregates for phosphorus treatment. evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research, 2015, 89: 355-365.
[7] TIAN J, YU C, LIU J, et al. Performance of an ultraviolet mutagenetic polyphosphate-accumulating bacterium PZ2 and its application for wastewater treatment in a newly designed constructed wetland[J]. Applied Biochemistry and Biotechnology, 2017, 181(2): 735-747. doi: 10.1007/s12010-016-2245-y
[8] YE C, LI L, ZHANG J, et al. Study on ABR stage-constructed wetland integrated system in treatment of rural sewage[J]. Procedia Environmental Sciences, 2012, 12: 687-692.
[9] SUN Y F, QI S Y, ZHENG F P, et al. Organics removal nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2018, 249: 57-61. doi: 10.1016/j.biortech.2017.10.004
[10] ZHOU X, LIANG C L, JIA L X, et al. An innovative biochar amended substrate vertical flow constructed wetland for low C/N wastewater treatment: impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044
[11] 袁敏, 刘晓冰, 唐美珍, 等. 生物炭固定菌强化人工湿地对低温污水中氮素去除的模拟研究[J]. 生态与农村环境学报, 2018, 34(5): 463-468. doi: 10.11934/j.issn.1673-4831.2018.05.011
[12] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3): 49-52.
[13] 方伟成, 王静, 周新萍. 3种填料吸附磷的特性及其影响因素[J]. 湿地科学, 2018, 16(3): 341-356.
[14] 王功, 魏东洋, 方晓航, 等. 3种湿地填料对水体中氮磷的吸附特性研究[J]. 环境污染与防治, 2012, 34(11): 9-13. doi: 10.3969/j.issn.1001-3865.2012.11.003
[15] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8): 1187-1194.
[16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[17] SAEED T, SUN G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands[J]. Water Research, 2011, 45(10): 3152.
[18] ZHANG S, YANG X L, LI H, et al. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J]. Bioresource Technology, 2017, 244(1): 345-352.
[19] 唐美珍, 汪文飞, 李如如, 等. 生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J]. 环境科学学报, 2017, 37(9): 3442-3448.
[20] DING W, XIAN Y, TAO L, et al. A research on purification effect of the substrate of constructed wetlands with FS-G-CD-S-SS model on phosphorus pollution[J]. Procedia Environmental Sciences, 2011, 10: 2645-2653.
[21] PARK J H, WANG J J, KIM S H, et al. Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag[J]. Chemical Engineering Journal, 2017, 327: 713-724. doi: 10.1016/j.cej.2017.06.155
[22] LI J, HU Z, LI F, et al. Effect of oxygen supply strategy on nitrogen removal of biochar-based vertical subsurface flow constructed wetland: Intermittent aeration and tidal flow[J]. Chemosphere, 2019, 223: 366-374. doi: 10.1016/j.chemosphere.2019.02.082
[23] TANG J H, LUO W Z, YANG B, et al. Optimization of planting concrete materials with nitrogen and phosphorus removal characteristic[J]. Materials Science and Engineering, 2018, 382: 022100.
[24] 王宁, 黄磊, 罗星, 等. 生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响[J]. 环境科学, 2018, 39(10): 115-121.
[25] MAO X, CAO Z, YIN Y, et al. Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10341-10350. doi: 10.1016/j.ijhydene.2018.04.100
[26] TANG X Y, YANG Y, MURRAY B, et al. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with fifive wetland plant species[J]. Chemosphere, 2019, 216: 195-202. doi: 10.1016/j.chemosphere.2018.10.150