微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
引用本文: 张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
Citation: ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089

微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

  • 基金项目:

    国家自然科学基金资助项目 41601520

    河南科技大学大学生研究训练计划(SRTP)项目 2018140 国家自然科学基金资助项目(41601520)

    河南科技大学大学生研究训练计划(SRTP)项目(2018140)

Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction

  • Fund Project:
  • 摘要: 利用正交实验确定了飞灰中重金属生物淋滤浸出的最佳条件:pH 4.0、飞灰固体浓度1%和硫粉添加量5 g·L-1。在此条件下,飞灰中Cu、Zn、Pb和Cd的去除率分别为47.3%、72.9%、12.4%和75.8%。通过氮气吹脱硫酸盐生物还原产生的H2S,在pH为2.2和4.0时可分别以硫化物沉淀形式选择回收生物淋滤产生的淋滤液中的Cu和Zn。X射线能谱分析发现,沉淀得到的铜和锌纯度分别达90.6%和99.9%。X射线衍射分析铜沉淀的晶体类型主要为靛铜矿(CuS)、蓝辉铜矿(Cu7S4)和雅硫铜矿(Cu9S8);锌沉淀主要为纤维锌矿(ZnS)。综合分析,微生物硫氧化-硫还原可以以纯净硫化物形式回收飞灰中47.3%的Cu和64.0%的Zn。
  • 加载中
  • [1] 周顺桂, 常明, 胡佩, 等. 污泥与猪粪作为培养基微生物去除垃圾焚烧飞灰中的重金属[J]. 环境科学,2005, 26(6): 180-185.
    [2] GARCIA-LODEIRO I, CAECELEN-TABOADA V, FERNáNDEZ-JIMéNEZ A, et al. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator[J]. Construction & Building Materials, 2016, 105: 218-226.
    [3] 林涛, 谢巧玲, 陈福明, 等. 基于重金属提取的垃圾焚烧飞灰无害化处理[J]. 环境工程学报, 2018, 12(9): 2642-2649.
    [4] ALORRO R D, HIROYOSHI N, ITO M, et al. Recovery of heavy metals from MSW molten fly ash by CIP method[J]. Hydrometallurgy, 2009, 97(1/2): 8-14.
    [5] 周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1): 125-133.
    [6] KIRAN M G, PAKSHIRAJAN K, DAS G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324: 62-70.
    [7] JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14): 3379-3389.
    [8] BIJMANS M F M, HELVOORT P J V, DAR S A, et al. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor[J]. Water Research, 2009, 43(3): 853-861.
    [9] JANDOVá J, LISá K, VU H, et al. Separation of copper and cobalt-nickel sulphide concentrates during processing of manganese deep ocean nodules[J]. Hydrometallurgy, 2005, 77(1/2): 75-79.
    [10] SAHINKAVA E, GUNGOR M, BAYRAKDAR A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 901-906.
    [11] CHAN L C, GU X Y, WONG J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria[J]. Advances in Environmental Research, 2003, 7(3): 603-607.
    [12] FANG D, ZHANG R C, LIU X, et al. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide[J]. Journal of Hazardous Materials.2012, 219-220: 119-126.
    [13] 节剑勇, 孙力平, 邱春生, 等. 基于生物淋滤的城市污泥重金属溶出及形态迁移[J]. 环境工程学报, 2018, 12(3): 939-946.
    [14] GU T, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018, 261(8): 428-440.
    [15] 邱秀文, 周桂香, 王天烽, 等. 氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J]. 环境工程学报, 2017, 11(9): 5201-5206.
    [16] FANG D, ZHAO L, ZHOU L X, et al. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments[J]. Environmental Letters, 2009, 44(7): 714-721.
    [17] FANG D, ZHAO L, YANG Z Q, et al. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments[J]. Environtal Technology, 2009, 30(12): 1241-1248.
    [18] MIHELCIC J R. Fundamentals of Environmental Engineering[M]. New York: John Wiley & Sons, 1999.
    [19] AHORANTA S H, KOKKO M E, PAPIRIO S, et al. Arsenic removal from acidic solutions with biogenic ferric precipitates[J]. Journal of Hazardous Materials, 2016, 306: 124-132.
    [20] SAMPAIO R M, TIMMERS R A, XU Y,et al. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 256-265.
    [21] VEEKEN A H, AKOTO L, HULSHOFF P L W, et al. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor[J]. Water Research, 2003, 37(15): 3709-3717.
  • 加载中
计量
  • 文章访问数:  2731
  • HTML全文浏览数:  2672
  • PDF下载数:  105
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

  • 1. 河南科技大学化工与制药学院,洛阳 471023
基金项目:

国家自然科学基金资助项目 41601520

河南科技大学大学生研究训练计划(SRTP)项目 2018140 国家自然科学基金资助项目(41601520)

河南科技大学大学生研究训练计划(SRTP)项目(2018140)

摘要: 利用正交实验确定了飞灰中重金属生物淋滤浸出的最佳条件:pH 4.0、飞灰固体浓度1%和硫粉添加量5 g·L-1。在此条件下,飞灰中Cu、Zn、Pb和Cd的去除率分别为47.3%、72.9%、12.4%和75.8%。通过氮气吹脱硫酸盐生物还原产生的H2S,在pH为2.2和4.0时可分别以硫化物沉淀形式选择回收生物淋滤产生的淋滤液中的Cu和Zn。X射线能谱分析发现,沉淀得到的铜和锌纯度分别达90.6%和99.9%。X射线衍射分析铜沉淀的晶体类型主要为靛铜矿(CuS)、蓝辉铜矿(Cu7S4)和雅硫铜矿(Cu9S8);锌沉淀主要为纤维锌矿(ZnS)。综合分析,微生物硫氧化-硫还原可以以纯净硫化物形式回收飞灰中47.3%的Cu和64.0%的Zn。

English Abstract

参考文献 (21)

目录

/

返回文章
返回