微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
引用本文: 张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
Citation: ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089

微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

  • 基金项目:

    国家自然科学基金资助项目 41601520

    河南科技大学大学生研究训练计划(SRTP)项目 2018140 国家自然科学基金资助项目(41601520)

    河南科技大学大学生研究训练计划(SRTP)项目(2018140)

Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction

  • Fund Project:
  • 摘要: 利用正交实验确定了飞灰中重金属生物淋滤浸出的最佳条件:pH 4.0、飞灰固体浓度1%和硫粉添加量5 g·L-1。在此条件下,飞灰中Cu、Zn、Pb和Cd的去除率分别为47.3%、72.9%、12.4%和75.8%。通过氮气吹脱硫酸盐生物还原产生的H2S,在pH为2.2和4.0时可分别以硫化物沉淀形式选择回收生物淋滤产生的淋滤液中的Cu和Zn。X射线能谱分析发现,沉淀得到的铜和锌纯度分别达90.6%和99.9%。X射线衍射分析铜沉淀的晶体类型主要为靛铜矿(CuS)、蓝辉铜矿(Cu7S4)和雅硫铜矿(Cu9S8);锌沉淀主要为纤维锌矿(ZnS)。综合分析,微生物硫氧化-硫还原可以以纯净硫化物形式回收飞灰中47.3%的Cu和64.0%的Zn。
  • 加载中
  • [1] 周顺桂, 常明, 胡佩, 等. 污泥与猪粪作为培养基微生物去除垃圾焚烧飞灰中的重金属[J]. 环境科学,2005, 26(6): 180-185.
    [2] GARCIA-LODEIRO I, CAECELEN-TABOADA V, FERNáNDEZ-JIMéNEZ A, et al. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator[J]. Construction & Building Materials, 2016, 105: 218-226.
    [3] 林涛, 谢巧玲, 陈福明, 等. 基于重金属提取的垃圾焚烧飞灰无害化处理[J]. 环境工程学报, 2018, 12(9): 2642-2649.
    [4] ALORRO R D, HIROYOSHI N, ITO M, et al. Recovery of heavy metals from MSW molten fly ash by CIP method[J]. Hydrometallurgy, 2009, 97(1/2): 8-14.
    [5] 周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1): 125-133.
    [6] KIRAN M G, PAKSHIRAJAN K, DAS G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324: 62-70.
    [7] JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14): 3379-3389.
    [8] BIJMANS M F M, HELVOORT P J V, DAR S A, et al. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor[J]. Water Research, 2009, 43(3): 853-861.
    [9] JANDOVá J, LISá K, VU H, et al. Separation of copper and cobalt-nickel sulphide concentrates during processing of manganese deep ocean nodules[J]. Hydrometallurgy, 2005, 77(1/2): 75-79.
    [10] SAHINKAVA E, GUNGOR M, BAYRAKDAR A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 901-906.
    [11] CHAN L C, GU X Y, WONG J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria[J]. Advances in Environmental Research, 2003, 7(3): 603-607.
    [12] FANG D, ZHANG R C, LIU X, et al. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide[J]. Journal of Hazardous Materials.2012, 219-220: 119-126.
    [13] 节剑勇, 孙力平, 邱春生, 等. 基于生物淋滤的城市污泥重金属溶出及形态迁移[J]. 环境工程学报, 2018, 12(3): 939-946.
    [14] GU T, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018, 261(8): 428-440.
    [15] 邱秀文, 周桂香, 王天烽, 等. 氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J]. 环境工程学报, 2017, 11(9): 5201-5206.
    [16] FANG D, ZHAO L, ZHOU L X, et al. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments[J]. Environmental Letters, 2009, 44(7): 714-721.
    [17] FANG D, ZHAO L, YANG Z Q, et al. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments[J]. Environtal Technology, 2009, 30(12): 1241-1248.
    [18] MIHELCIC J R. Fundamentals of Environmental Engineering[M]. New York: John Wiley & Sons, 1999.
    [19] AHORANTA S H, KOKKO M E, PAPIRIO S, et al. Arsenic removal from acidic solutions with biogenic ferric precipitates[J]. Journal of Hazardous Materials, 2016, 306: 124-132.
    [20] SAMPAIO R M, TIMMERS R A, XU Y,et al. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 256-265.
    [21] VEEKEN A H, AKOTO L, HULSHOFF P L W, et al. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor[J]. Water Research, 2003, 37(15): 3709-3717.
  • 期刊类型引用(11)

    1. 叶昌明,伍波. 上向流反硝化滤池在高排放标准污水厂的应用研究. 中国给水排水. 2024(20): 7-15 . 百度学术
    2. 戴杨叶,张大鹏,朱健,卞小锋,洪士杰. IFAS工艺用于提标改造的运行效果及污染物降解动力学. 净水技术. 2023(05): 93-101 . 百度学术
    3. 王年,郁小娟,骆楠,王玲,王昭玥,肖冰冰,陈俊律,宋增福. 玻璃轻石序批式生物膜反应器构建参数优化及水产养殖污水脱氮性能研究. 南方农业学报. 2023(09): 2721-2731 . 百度学术
    4. 任武昂,曹锋锋,鞠恺,金鹏康,李思敏,柴蓓蓓,雷晓辉. 间歇曝气-内循环生物滤池效能及生物膜特性. 中国环境科学. 2022(02): 629-636 . 百度学术
    5. 白倩倩,刘永红,王宁,杜燕萍. PBG-MBBR系统启动过程中生物膜特性变化研究. 化学工程师. 2022(03): 77-82 . 百度学术
    6. 王博,刘永红,王宁,王全红. 不同水力停留时间下两级A/O-PBG/MBBR污水脱氮性能及生物膜活性变化研究. 化学工程师. 2022(03): 37-41 . 百度学术
    7. 潘宏,朱经纬,彭方,张天翼,罗艾虎,彭怡欣,宋慧婷. 活性污泥-生物膜一体化反应器对废水中苯酚的降解性能. 环境工程学报. 2022(04): 1373-1380 . 本站查看
    8. 朱磊,唐海,宋珍霞,殷久龙,刘娣,黄婷婷. ZVIP-CRI协同体系强化低C/N比污水的脱氮机理及性能. 环境工程学报. 2021(09): 3046-3056 . 本站查看
    9. 龙天渝,郭莉莎,贾黎明,罗超. 紊流脉动对生物膜理化性质的影响. 哈尔滨工业大学学报. 2021(11): 14-20 . 百度学术
    10. 汤家祥. 活性砂反硝化滤池工艺提标改造污水处理厂. 广东化工. 2021(23): 191-193+163 . 百度学术
    11. 王睿,张冬冬,郭鹏,王轶,章春芳,陈磊. 活性炭-聚四氟乙烯电极对生物电化学系统中NH_4~+-N去除的影响. 湖北农业科学. 2020(21): 81-87 . 百度学术

    其他类型引用(16)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.7 %DOWNLOAD: 3.7 %FULLTEXT: 90.5 %FULLTEXT: 90.5 %META: 5.8 %META: 5.8 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 87.5 %其他: 87.5 %Anwo: 0.1 %Anwo: 0.1 %Ashburn: 0.2 %Ashburn: 0.2 %Beijing: 2.5 %Beijing: 2.5 %Chang'an: 0.1 %Chang'an: 0.1 %Chengdu: 0.1 %Chengdu: 0.1 %Chennai: 0.1 %Chennai: 0.1 %Chongqing: 0.2 %Chongqing: 0.2 %Dongguan: 0.2 %Dongguan: 0.2 %Fangqian: 0.1 %Fangqian: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Gaoleshan: 0.1 %Gaoleshan: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.6 %Hangzhou: 0.6 %Harbin: 0.1 %Harbin: 0.1 %Hefei: 0.1 %Hefei: 0.1 %Jinan: 0.2 %Jinan: 0.2 %Jinrongjie: 0.1 %Jinrongjie: 0.1 %Kunming: 0.1 %Kunming: 0.1 %Kunshan: 0.1 %Kunshan: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %Newark: 0.1 %Newark: 0.1 %Serra: 0.1 %Serra: 0.1 %Shanghai: 0.5 %Shanghai: 0.5 %Shantou: 0.1 %Shantou: 0.1 %Shenyang: 0.1 %Shenyang: 0.1 %Shūnan: 0.1 %Shūnan: 0.1 %Taipei: 0.1 %Taipei: 0.1 %Taiyuan: 0.2 %Taiyuan: 0.2 %Taizhou: 0.1 %Taizhou: 0.1 %Tianjin: 0.2 %Tianjin: 0.2 %Wuxi: 0.3 %Wuxi: 0.3 %Xi'an: 0.1 %Xi'an: 0.1 %Xiangtan: 0.1 %Xiangtan: 0.1 %XX: 3.1 %XX: 3.1 %Yantai: 0.1 %Yantai: 0.1 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %Zhuanghe: 0.1 %Zhuanghe: 0.1 %Zibo: 0.1 %Zibo: 0.1 %上海: 0.1 %上海: 0.1 %丽水: 0.1 %丽水: 0.1 %亳州: 0.1 %亳州: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.6 %北京: 0.6 %南宁: 0.1 %南宁: 0.1 %台州: 0.1 %台州: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %天津: 0.2 %天津: 0.2 %张家口: 0.1 %张家口: 0.1 %新乡: 0.1 %新乡: 0.1 %曲靖: 0.1 %曲靖: 0.1 %柳州: 0.1 %柳州: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %连云港: 0.1 %连云港: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AnwoAshburnBeijingChang'anChengduChennaiChongqingDongguanFangqianGaochengGaoleshanGuangzhouGulanHangzhouHarbinHefeiJinanJinrongjieKunmingKunshanMountain ViewNewarkSerraShanghaiShantouShenyangShūnanTaipeiTaiyuanTaizhouTianjinWuxiXi'anXiangtanXXYantaiYunchengZhengzhouZhuangheZibo上海丽水亳州内网IP北京南宁台州呼和浩特天津张家口新乡曲靖柳州桂林武汉济南深圳连云港郑州重庆阳泉Highcharts.com
计量
  • 文章访问数:  3133
  • HTML全文浏览数:  3074
  • PDF下载数:  109
  • 施引文献:  27
出版历程
  • 刊出日期:  2019-06-03
张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
引用本文: 张瑞昌, 邱会玲, 王婷, 冯帆, 李梦婷. 微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn[J]. 环境工程学报, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089
Citation: ZHANG Ruichang, QIU Huiling, WANG Ting, FENG Fan, LI Mengting. Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1220-1227. doi: 10.12030/j.cjee.201810089

微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn

  • 1. 河南科技大学化工与制药学院,洛阳 471023
基金项目:

国家自然科学基金资助项目 41601520

河南科技大学大学生研究训练计划(SRTP)项目 2018140 国家自然科学基金资助项目(41601520)

河南科技大学大学生研究训练计划(SRTP)项目(2018140)

摘要: 利用正交实验确定了飞灰中重金属生物淋滤浸出的最佳条件:pH 4.0、飞灰固体浓度1%和硫粉添加量5 g·L-1。在此条件下,飞灰中Cu、Zn、Pb和Cd的去除率分别为47.3%、72.9%、12.4%和75.8%。通过氮气吹脱硫酸盐生物还原产生的H2S,在pH为2.2和4.0时可分别以硫化物沉淀形式选择回收生物淋滤产生的淋滤液中的Cu和Zn。X射线能谱分析发现,沉淀得到的铜和锌纯度分别达90.6%和99.9%。X射线衍射分析铜沉淀的晶体类型主要为靛铜矿(CuS)、蓝辉铜矿(Cu7S4)和雅硫铜矿(Cu9S8);锌沉淀主要为纤维锌矿(ZnS)。综合分析,微生物硫氧化-硫还原可以以纯净硫化物形式回收飞灰中47.3%的Cu和64.0%的Zn。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回