[1] |
周顺桂, 常明, 胡佩, 等. 污泥与猪粪作为培养基微生物去除垃圾焚烧飞灰中的重金属[J]. 环境科学,2005, 26(6): 180-185.
|
[2] |
GARCIA-LODEIRO I, CAECELEN-TABOADA V, FERNáNDEZ-JIMéNEZ A, et al. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator[J]. Construction & Building Materials, 2016, 105: 218-226.
|
[3] |
林涛, 谢巧玲, 陈福明, 等. 基于重金属提取的垃圾焚烧飞灰无害化处理[J]. 环境工程学报, 2018, 12(9): 2642-2649.
|
[4] |
ALORRO R D, HIROYOSHI N, ITO M, et al. Recovery of heavy metals from MSW molten fly ash by CIP method[J]. Hydrometallurgy, 2009, 97(1/2): 8-14.
|
[5] |
周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1): 125-133.
|
[6] |
KIRAN M G, PAKSHIRAJAN K, DAS G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324: 62-70.
|
[7] |
JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14): 3379-3389.
|
[8] |
BIJMANS M F M, HELVOORT P J V, DAR S A, et al. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor[J]. Water Research, 2009, 43(3): 853-861.
|
[9] |
JANDOVá J, LISá K, VU H, et al. Separation of copper and cobalt-nickel sulphide concentrates during processing of manganese deep ocean nodules[J]. Hydrometallurgy, 2005, 77(1/2): 75-79.
|
[10] |
SAHINKAVA E, GUNGOR M, BAYRAKDAR A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 901-906.
|
[11] |
CHAN L C, GU X Y, WONG J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria[J]. Advances in Environmental Research, 2003, 7(3): 603-607.
|
[12] |
FANG D, ZHANG R C, LIU X, et al. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide[J]. Journal of Hazardous Materials.2012, 219-220: 119-126.
|
[13] |
节剑勇, 孙力平, 邱春生, 等. 基于生物淋滤的城市污泥重金属溶出及形态迁移[J]. 环境工程学报, 2018, 12(3): 939-946.
|
[14] |
GU T, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018, 261(8): 428-440.
|
[15] |
邱秀文, 周桂香, 王天烽, 等. 氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J]. 环境工程学报, 2017, 11(9): 5201-5206.
|
[16] |
FANG D, ZHAO L, ZHOU L X, et al. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments[J]. Environmental Letters, 2009, 44(7): 714-721.
|
[17] |
FANG D, ZHAO L, YANG Z Q, et al. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments[J]. Environtal Technology, 2009, 30(12): 1241-1248.
|
[18] |
MIHELCIC J R. Fundamentals of Environmental Engineering[M]. New York: John Wiley & Sons, 1999.
|
[19] |
AHORANTA S H, KOKKO M E, PAPIRIO S, et al. Arsenic removal from acidic solutions with biogenic ferric precipitates[J]. Journal of Hazardous Materials, 2016, 306: 124-132.
|
[20] |
SAMPAIO R M, TIMMERS R A, XU Y,et al. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 256-265.
|
[21] |
VEEKEN A H, AKOTO L, HULSHOFF P L W, et al. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor[J]. Water Research, 2003, 37(15): 3709-3717.
|