污泥热解-自源炭重整获取高品质油气产物

徐根利, 梅振飞, 陈德珍. 污泥热解-自源炭重整获取高品质油气产物[J]. 环境工程学报, 2019, 13(5): 1209-1219. doi: 10.12030/j.cjee.201810130
引用本文: 徐根利, 梅振飞, 陈德珍. 污泥热解-自源炭重整获取高品质油气产物[J]. 环境工程学报, 2019, 13(5): 1209-1219. doi: 10.12030/j.cjee.201810130
XU Genli, MEI Zhenfei, CHEN Dezhen. Produce high quality gas & oil products from sewage sludge pyrolysis & char reforming process[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1209-1219. doi: 10.12030/j.cjee.201810130
Citation: XU Genli, MEI Zhenfei, CHEN Dezhen. Produce high quality gas & oil products from sewage sludge pyrolysis & char reforming process[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1209-1219. doi: 10.12030/j.cjee.201810130

污泥热解-自源炭重整获取高品质油气产物

  • 基金项目:

    国家自然科学基金面上项目51776141

    四川省科技计划资助2018TJPT0017国家自然科学基金面上项目(51776141)

    四川省科技计划资助(2018TJPT0017)

Produce high quality gas & oil products from sewage sludge pyrolysis & char reforming process

  • Fund Project:
  • 摘要: 利用污泥热解-自源炭重整的方式获得高品质的燃气和油,为了实现更高的气、油转化率,在600 ℃的重整条件下,对比了污泥在450~600 ℃内不同热解温度下产生的热解挥发分利用自源炭催化重整后的气、油产量与特性,同时考察了自源炭生成方式的影响。研究结果表明,550 ℃下污泥热解产生的热解液产量最高,同时最容易被炭催化裂解,但是因积碳使得污泥转化为气、油的产率不高。600 ℃下热解产生的挥发分经过重整后获得最高的气体转化率与热值,但也存在积碳问题。与一步升温到600 ℃的热解炭相比,不同温度下的热解炭继续被加热到600 ℃所获得的分步热解炭更符合连续化操作要求,但其重整效果总体上不如前者好;而热解温度在450 ℃时例外,450 ℃的热解炭继续升温至600 ℃并重整450 ℃热解挥发分,能够获得最高的气、油产率并减少碳沉积。在实际情况下的热解-重整连续化操作中推荐热解温度为450 ℃以及重整温度为600 ℃,以获得高值产物并降低对热解装置的要求。
  • 加载中
  • [1] 中国环境保护产业协会固体废物处理利用委员会. 固体废物处理利用行业2016年发展综述[J]. 中国环保产业, 2017(8): 10-19.
    [2] CABALLERO J A, CONESA J A, FONT R, et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions[J]. Journal of Analytical & Applied Pyrolysis, 1997, 42(2): 159-175.
    [3] YU G, CHEN D, ARENA U, et al. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield[J]. Waste Management, 2017, 73: 464-475.
    [4] 廖艳芬, 王树荣, 洪军, 等. 生物质热裂解制取液体燃料的实验研究[J]. 能源工程, 2002(3): 1-3.
    [5] ZHANG Q, CHANG J, WANG T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion & Management, 2007, 48(1): 87-92.
    [6] 卢欢亮, 叶向东, 汪永红, 等. 热解温度对污泥生物炭的表面特性及重金属安全性的影响[J]. 环境工程学报, 2015, 9(3):1433-1439.
    [7] YOUNG G C. Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons[M]. New Jersey: John Wiley, 2010.
    [8] ELRUB Z A, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10/11): 2243-2252.
    [9] 尤占平, 由世俊, 李宪莉, 等. 生物质炭催化裂解焦油的实验研究[J]. 太阳能学报, 2011, 32(5): 718-723.
    [10] WANG N, CHEN D, ARENA U, et al. Hot char-catalytic reforming of volatiles from MSW pyrolysis[J]. Applied Energy, 2017, 191 :111-124.
    [11] YU G, FENG Y, CHEN D Z, et al. In-situ reforming of the volatile by char during the sewage sludge pyrolysis[J]. Energy & Fuels, 2016, 30(12): 10396-10403.
    [12] KLINGHOFFER N B, CASTALDI M J, NZIHOU A. Catalyst properties and catalytic performance of char from biomass gasification[J]. Industrial & Engineering Chemical Research, 2012, 51(40): 13113-13122.
    [13] BAGREEV A, BANDOSZ T J, LOCKE D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon, 2001, 39(13): 1971-1979.
    [14] ZHANG J, Lü F, ZHANG H, et al. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication[J]. Scientific Reports, 2015, 5: 9406.
    [15] 程国淡, 黄青, 张凯松. 热解温度和时间对污泥生物碳理化性质的影响[J]. 环境工程学报, 2012, 6(11):4209-4214.
    [16] LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels: A review[J]. Fuel, 2013, 112(3): 609-623.
    [17] 刘秀如. 城市污水污泥热解实验研究[D]. 北京:中国科学院大学, 2011.
    [18] 李海英, 张书廷, 赵新华. 城市污水污泥热解温度对产物分布的影响[J]. 太阳能学报, 2006, 27(8): 835-840.
    [19] FUENTES-CANO D, GóMEZ-BAREA A, NILSSON S, et al. Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification[J]. Chemical Engineering Journal, 2013, 228(28):1223-1233.
    [20] KAMISHITA M, MAHAJAN O, WALKER P. Effect of carbon deposition on porosity and reactivity of a lignite char[J]. Fuel, 1977, 56(4): 444-450.
    [21] LI H Y, XU Q L, XUE H S, et al. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass[J]. Renewable Energy, 2009, 34(12): 2872-2877.
    [22] ZHANG S, ASADULLAH M, DONG L, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support[J]. Fuel, 2013, 112(3): 646-653.
    [23] 金湓, 李宝霞, 金诚. 不同温度区间内污泥热解气固相产物特征[J]. 化工学报, 2014, 65(6): 2316-2322.
    [24] OYEDUN A O, LAM K L, CHI W H. Charcoal production via multistage pyrolysis[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 455-460.
    [25] PARK E S, KANG B S, KIM J S. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants[J]. Energy & Fuels, 2008, 22(2): 1335-1340.
    [26] WILLIAMS P T, BESLER S. Polycyclic aromatic hydrocarbons in waste derived pyrolytic oils[J]. Journal of Analytical & Applied Pyrolysis, 1994, 30(1): 17-33.
  • 加载中
计量
  • 文章访问数:  3048
  • HTML全文浏览数:  2994
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

污泥热解-自源炭重整获取高品质油气产物

  • 1. 同济大学机械与能源工程学院,热能与环境工程研究所,上海 201804
基金项目:

国家自然科学基金面上项目51776141

四川省科技计划资助2018TJPT0017国家自然科学基金面上项目(51776141)

四川省科技计划资助(2018TJPT0017)

摘要: 利用污泥热解-自源炭重整的方式获得高品质的燃气和油,为了实现更高的气、油转化率,在600 ℃的重整条件下,对比了污泥在450~600 ℃内不同热解温度下产生的热解挥发分利用自源炭催化重整后的气、油产量与特性,同时考察了自源炭生成方式的影响。研究结果表明,550 ℃下污泥热解产生的热解液产量最高,同时最容易被炭催化裂解,但是因积碳使得污泥转化为气、油的产率不高。600 ℃下热解产生的挥发分经过重整后获得最高的气体转化率与热值,但也存在积碳问题。与一步升温到600 ℃的热解炭相比,不同温度下的热解炭继续被加热到600 ℃所获得的分步热解炭更符合连续化操作要求,但其重整效果总体上不如前者好;而热解温度在450 ℃时例外,450 ℃的热解炭继续升温至600 ℃并重整450 ℃热解挥发分,能够获得最高的气、油产率并减少碳沉积。在实际情况下的热解-重整连续化操作中推荐热解温度为450 ℃以及重整温度为600 ℃,以获得高值产物并降低对热解装置的要求。

English Abstract

参考文献 (26)

目录

/

返回文章
返回