[1] |
中国环境保护产业协会固体废物处理利用委员会. 固体废物处理利用行业2016年发展综述[J]. 中国环保产业, 2017(8): 10-19.
|
[2] |
CABALLERO J A, CONESA J A, FONT R, et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions[J]. Journal of Analytical & Applied Pyrolysis, 1997, 42(2): 159-175.
|
[3] |
YU G, CHEN D, ARENA U, et al. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield[J]. Waste Management, 2017, 73: 464-475.
|
[4] |
廖艳芬, 王树荣, 洪军, 等. 生物质热裂解制取液体燃料的实验研究[J]. 能源工程, 2002(3): 1-3.
|
[5] |
ZHANG Q, CHANG J, WANG T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion & Management, 2007, 48(1): 87-92.
|
[6] |
卢欢亮, 叶向东, 汪永红, 等. 热解温度对污泥生物炭的表面特性及重金属安全性的影响[J]. 环境工程学报, 2015, 9(3):1433-1439.
|
[7] |
YOUNG G C. Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons[M]. New Jersey: John Wiley, 2010.
|
[8] |
ELRUB Z A, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10/11): 2243-2252.
|
[9] |
尤占平, 由世俊, 李宪莉, 等. 生物质炭催化裂解焦油的实验研究[J]. 太阳能学报, 2011, 32(5): 718-723.
|
[10] |
WANG N, CHEN D, ARENA U, et al. Hot char-catalytic reforming of volatiles from MSW pyrolysis[J]. Applied Energy, 2017, 191 :111-124.
|
[11] |
YU G, FENG Y, CHEN D Z, et al. In-situ reforming of the volatile by char during the sewage sludge pyrolysis[J]. Energy & Fuels, 2016, 30(12): 10396-10403.
|
[12] |
KLINGHOFFER N B, CASTALDI M J, NZIHOU A. Catalyst properties and catalytic performance of char from biomass gasification[J]. Industrial & Engineering Chemical Research, 2012, 51(40): 13113-13122.
|
[13] |
BAGREEV A, BANDOSZ T J, LOCKE D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon, 2001, 39(13): 1971-1979.
|
[14] |
ZHANG J, Lü F, ZHANG H, et al. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication[J]. Scientific Reports, 2015, 5: 9406.
|
[15] |
程国淡, 黄青, 张凯松. 热解温度和时间对污泥生物碳理化性质的影响[J]. 环境工程学报, 2012, 6(11):4209-4214.
|
[16] |
LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels: A review[J]. Fuel, 2013, 112(3): 609-623.
|
[17] |
刘秀如. 城市污水污泥热解实验研究[D]. 北京:中国科学院大学, 2011.
|
[18] |
李海英, 张书廷, 赵新华. 城市污水污泥热解温度对产物分布的影响[J]. 太阳能学报, 2006, 27(8): 835-840.
|
[19] |
FUENTES-CANO D, GóMEZ-BAREA A, NILSSON S, et al. Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification[J]. Chemical Engineering Journal, 2013, 228(28):1223-1233.
|
[20] |
KAMISHITA M, MAHAJAN O, WALKER P. Effect of carbon deposition on porosity and reactivity of a lignite char[J]. Fuel, 1977, 56(4): 444-450.
|
[21] |
LI H Y, XU Q L, XUE H S, et al. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass[J]. Renewable Energy, 2009, 34(12): 2872-2877.
|
[22] |
ZHANG S, ASADULLAH M, DONG L, et al. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support[J]. Fuel, 2013, 112(3): 646-653.
|
[23] |
金湓, 李宝霞, 金诚. 不同温度区间内污泥热解气固相产物特征[J]. 化工学报, 2014, 65(6): 2316-2322.
|
[24] |
OYEDUN A O, LAM K L, CHI W H. Charcoal production via multistage pyrolysis[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 455-460.
|
[25] |
PARK E S, KANG B S, KIM J S. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants[J]. Energy & Fuels, 2008, 22(2): 1335-1340.
|
[26] |
WILLIAMS P T, BESLER S. Polycyclic aromatic hydrocarbons in waste derived pyrolytic oils[J]. Journal of Analytical & Applied Pyrolysis, 1994, 30(1): 17-33.
|