-
黑碳(black carbon,BC)是由生物质和化石燃料不完全燃烧产生的含碳物质连续统一体[1],包括具有燃烧源颗粒物特征团聚形态的材料[2 − 3],也可指吸收太阳辐射所有波长的颗粒物中的碳质成分[4]. 在全球范围内,BC的来源多样,既有自然来源[5],也有人为来源[6 − 7]. 大量不同来源的BC进入大气圈,参与到全球碳循环. BC显著的耐高温性能、稳定的芳构化分子结构以及不易溶于水及典型有机溶剂的特性,使其在大气圈、水圈(含冷冻圈)、土壤圈和生物圈中能够持久存在并具有远距离迁移的能力[2, 8].
BC在环境中的传输、沉积和迁移不仅是一个地球化学过程,而且是一个多尺度、多过程的地球系统交互作用的结果. BC常以细颗粒物和气溶胶的形式悬浮,能够与其他气溶胶混合在大气中长距离传输形成大范围的大气棕云[9],再通过气象过程如降雨或降雪沉积到地表水体和土壤中[10]. 这种现象说明大气圈作为连接各个地球圈层的桥梁,在地球系统物质循环中发挥重要作用. 而在土壤圈和水圈(包括冰冻圈)中的累积不仅显著影响长期的环境,也进一步揭示地球系统物质循环的复杂性. 特别是部分粒径较大的BC可以在长时间尺度上成为二氧化碳(CO2)汇,影响其所在碳储库以及全球范围内的碳循环过程[11]. 此外,BC还可能以溶解态(DBC)和颗粒态(PBC)的形式从土壤中流失,随后通过地表径流迁移至水体[6, 12 − 14]. 这一过程不仅揭示了水圈在BC全球循环中的作用,也说明了陆地与海洋之间碳循环的紧密联系. BC的赋存和分布特征还会与气象条件、地理位置、气候演变和人类活动等多种环境因素相互关联. 这些因素能够对BC的迁移转化产生重要影响,进而影响生态系统和环境质量.
BC可对环境和人体健康产生显著的负面影响. BC气溶胶通过吸收太阳辐射直接影响地球大气层的辐射平衡,其总辐射强迫值达到约+1.1 W·m−2,产生的温室效应仅次于CO2[8]. BC吸收和重新辐射太阳辐射会加热大气边界层上层空气,从而抑制了大气边界层的形成[15],导致大气稳定性增加,进而对气象和大气传输过程产生不利影响,对区域空气质量产生负面效应. BC还可以通过吸附和还原影响有机污染物的生物利用度和金属毒性[16 − 17],进而影响生态系统. 近期研究表明,BC与一系列健康问题紧密相关,如儿童的认知功能下降、成年人的子宫疾病和心血管疾病等[18 − 20]. 因此,BC的深入研究和有效管理对于改善环境质量、减少健康风险以及应对气候变化具有至关重要的意义[21].
当前,BC的研究领域主要聚焦于定性识别和定量检测技术,而对于BC的环境赋存、分布、迁移转化过程以及对生态系统的具体影响效应的探讨相对不足. 通过综合现有的研究成果,本综述旨在提供一个较全面的视角来理解BC在地球系统中的多方面作用,总结了BC的环境来源和分布特征,详细分析了BC在环境中的迁移转化机制以及它在碳循环中的关键作用,并深入归纳了影响BC迁移转化的主要因素. 此外,着重评述了当前研究中存在的问题,并对未来研究方向进行了展望.
黑碳在环境中的赋存、时空分布及迁移转化特征
Occurrence, spatiotemporal distribution, and migration-transformation characteristics of black carbon in the environment
-
摘要: 黑碳(black carbon,BC)作为典型的颗粒污染物,具有复杂的组成,能够对空气质量、生态环境甚至人体健康产生深远的影响. 深入探究BC的赋存、分布特征和迁移转化过程,对深刻理解其对气候变化、大气污染控制、健康效应的影响具有重要意义. BC来源于自然和人为活动,并可在水-气-固三相间跨介质传输,增加了其溯源解析研究的难度. BC的时空分布受诸多种因素影响,包括地理、气象和排放源等,其研究极具挑战性. 本综述分析了BC的源与汇,归纳了其在不同环境介质中赋存、时空分布特征及迁移转化,总结了其分布规律与关键影响因素,可为更好的理解“碳循环”及实施“双碳战略”提供基础理论支撑.Abstract: Black Carbon (BC), a common particulate pollutant, has a complex composition that profoundly impacts air quality, the ecological environment, and even human health. Delving into its occurrence, distribution, and transformation processes is crucial for a deep understanding of its effects on climate change, air pollution control, and health implications. BC arises from both natural and anthropogenic sources and undergoes cross-media transmission among water, air, and soil phases, complicating its source tracing studies. Its spatiotemporal distribution is influenced by various factors, including geography, meteorology, and emission sources, making its study challenging. This review focused on the sources and sinks of BC, its presence, spatiotemporal distribution, and transformation in different environmental media, the distribution patterns and key influencing factors, which provided theoretical support for better understanding of the “carbon cycle” and the implementation of “dual carbon strategy”.
-
Key words:
- black carbon /
- air pollution /
- ecological environment /
- carbon cycle /
- dual carbon strategy
-
表 1 不同大气环境中的BC分布特征
Table 1. Distribution Characteristics of BC in Different Atmospheric Environments
区域名称
Regional name来源
SourceBC含量
BC content分布特征
Distribution characteristics参考文献
References中国(多站点) 生物质和化石燃料燃烧 年平均浓度为3534 ng·m−3 城市高于农村和偏远站点,东南高于西北地区,季节和日变化显著 [35 − 36] 英国(多站点) 交通排放,家庭烹饪和生物质燃烧 年平均浓度范围为
0.45 —9.72 µg·m−3城市最高,乡村最低 [37] 德国(多站点) 家庭取暖,交通排放,森林火灾 所有地点均呈下降趋势 季节变化显著 [38] 芬兰大赫尔辛基(城市) 交通排放,木材燃烧 年平均浓度为0.16—2.64 µg·m−3 季节变化显著,日变化显著 [39] 美国纽约梅维尔(农村) 住宅木材燃烧 月浓度范围为10—900 ng·m−3 季节变化微弱 [40] 法国奥尔良市
(郊区)生物质燃烧和化石燃料 年平均浓度为0.48—0.75 μg·m−3 季节变化显著,周末效应显著 [41] 欧洲(农村) 生物质和化石燃料燃烧,局部源排放 质量吸收截面为10 m2·g−1 季节变化显著 [42] 亚马逊高塔观测站(森林) 生物质燃烧 质量比吸收截面雨季为
(11.4±1.2)m2·g−1;
旱季为(12.3±1.3)m2·g−1旱季略高 [43] 加拿大阿勒特市(最北居住地) 大气传输 浓度最高330 ng·m−3;
最低5 ng·m−3季节变化显著 [44] 中国祁连山(冰川) — 浓度范围为18—72 ng·m−3 夏季最高,秋季最低 [45] 中国瓦里关山(高山) 生物质和化石燃料燃烧 年平均浓度为(449±366)ng·m−3 季节变化显著,春季和夏季高于冬季和秋季 [46 − 47] 日本西部福岛 大气传输 2010—2018年年平均浓度从0.412 µg·m−3下降至0.214 µg·m−3 季节变化显著 [48 − 49] 意大利三个盆地山谷 交通、取暖和工业排放 混合高度处,BC浓度从-48.4%±5.3%到
-69.1%±5.5%在混合高度处,BC的浓度显著下降 [50] 中国南京 交通和工业排放、建筑活动以及大气传输 在地面达到7.5 µg·m−3,在标准高度=1时下降到2.4 µg·m−3 BC加热速率的垂直分布对BC剖面类型敏感 [51] 中国广州,四川盆地 交通排放,生物质和化石燃料燃烧 广州可达(5.3±3.1)μg·m−3;四川盆地可达
20 μg·m−3BC随海拔高度降低 [52 − 53] 中国长三角地区 生物质和化石燃料燃烧,交通排放 杭州上午:1.2—4.8 μg·m−3;下午:0.93—
1.2 μg·m−3,淀山湖:(1.39±1.15)μg·m−3上午垂直分布特征呈显著负变化,下午趋于稳定,季节变化显著 [54 − 55] 表 2 不同水体环境中的BC分布特征
Table 2. Distribution Characteristics of BC in Different Aquatic Environments
区域名称
Regional name来源
SourceBC含量
BC content分布特征
Distribution characteristics参考文献
References太湖(湖泊) 化石燃料消耗 梅梁湾>太湖西部和南部>太湖东部 沿湖岸向湖中心减少 [7] 长江、黄河、珠江和黑龙江(江河) 生物质燃烧 DBC年通量:长江55 Gg(1 Gg = 1 × 109 g);
黄河3.5 Gg;珠江口22 Gg;黑龙江11 Gg冬季和夏季的DBC/DOC(溶解态有机碳)比例较低 [71] 巴西南帕拉伊巴河(河流) 主要来源于C3植物 DBC浓度为5—35 µmol·L−1 雨季高旱季低 [5] 北冰洋西部和白令海(海洋) 河流输入 DBC浓度为0.67—4.18 μmol·L−1C 分布受河流排放主导 [79] 中国东海(河口与陆架) 河流输入 BC沉积年通量(630±728)Gg 随距离海岸线的增加而减小 [80] 美国佐治亚州阿尔塔马哈河(河流) 大气沉降,河流输入 DBC:0.27—0.45 ppm;PBC:< 0.25 ppm PBC和DBC通量可能是相关的 [81] 越南下龙湾 河流输入,大气沉降 PBC的平均浓度>DBC平均浓度 空间和季节分布遵循盐度的变化而变化 [73] 西北太平洋及其边缘海域 大气沉降 表层(6.40±1.08)µg·L−1C;中间层(6.10±0.86)µg·L−1C;深层(4.51±0.78)µg·L−1C 表层最高,随深度增加而降低 [72] 表 3 不同土壤及沉积物环境中的BC分布特征
Table 3. Distribution Characteristics of BC in Different Soil and Sediment Environments
区域名称
Regional name来源
SourceBC含量
BC content分布特征
Distribution characteristics参考文献
References中国(城市) 化石燃料燃烧和生物质燃烧 沈阳BC含量0.38%±0.15%;徐州BC浓度范围4.4—25.2 mg·g−1;南京:0.22—32.19 g kg−1;
鞍山1.86—246.46 g·kg−1;北京BC平均浓度为(5.83±3.05)mg·g−1城市土壤中BC含量显著较高 [83 − 87] 捷克波西米亚南部(多位点) 人类活动 BC含量2.16% Corg(Organic Carbon) 人口稀少的地区,BC含量较低,城市地区较高 [88] 英国(城市) 化石燃料燃烧和生物质燃烧 BC浓度中位数:考文垂0.46%;
特伦特河畔斯托克0.59%;格拉斯哥1.77%格拉斯哥>考文垂和特伦特河畔斯托克 [89] 美国亚利桑那州凤凰城(多位点) 化石燃料燃烧占比较大 含量为0.02%wt—0.54 %wt 城市土壤中的BC浓度>沙漠或农业土壤 [90] 法国中部地区(农业用地) 可能是柴油燃烧 浓度范围为0.1—4.7 g·kg−1 BC含量显著变化 [91] 喜马拉雅和青藏高原(冰川) 燃烧源 浓度范围为0.05—5.69 mg·g−1 BC浓度较稳定且低于其他低海拔站点 [92] 南印度西高止山脉(森林多位点) 野火和生物质燃烧,交通排放 森林地区含量较高:(6±3)g·kg−1;
城市地区最低:(2±1)g·kg−1北部地区(由森林和农田组成)高于其他地区 [93] 青藏高原青海湖流域(多位点) 生物燃料和化石燃料的燃烧 平均浓度为1.3 g·kg−1 随土壤深度的增加而降低 [94] 长江口和东海陆架 生物质火灾,化石燃料燃烧,气溶胶沉降 浓度范围0.02—0.14 mg·g−1 沉积物BC含量:长江口高于东海陆架 [25] 中国东部边缘海 化石燃料燃烧和生物质燃烧 沉积物中元素碳平均浓度范围为
0.77—1.46 mg·g−1BC相关的元素碳分布:时间上从底部到近表层减少,空间上从近岸到远岸减少 [95] 中国青藏高原的湖泊 生物质燃烧排放是主要来源 南坡湖底沉积物:(15.50±22.67)mg g−1,
北坡湖底沉积物:(1.28±0.62)mg·g−1随着人为排放模式的增加,BC呈增加趋势 [96] -
[1] GOLDBERG E D, Black carbon in the environment: Properties and distribution[M]. New York: John Wiley & Sons, 1985: 198. [2] PETZOLD A, OGREN J A, FIEBIG M, et al. Recommendations for reporting “black carbon” measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8365-8379. doi: 10.5194/acp-13-8365-2013 [3] KUHLBUSCH T A J, CRUTZEN P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochemical Cycles, 1995, 9(4): 491-501. doi: 10.1029/95GB02742 [4] U. S. EPA, Report to congress on black carbon[R]. United States Environmental Protection Agency, 2012. [5] MARQUES J S J, DITTMAR T, NIGGEMANN J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5: 11. [6] MITRA S, BIANCHI T S, McKEE B A, et al. Black carbon from the Mississippi River: Quantities, sources, and potential implications for the global carbon cycle[J]. Environmental Science & Technology, 2002, 36(11): 2296-2302. [7] HUANG C C, MENG L Z, HE Y, et al. Spatial variation of particulate black carbon, and its sources in a large eutrophic urban lake in China[J]. The Science of the Total Environment, 2022, 803: 150057. doi: 10.1016/j.scitotenv.2021.150057 [8] BOND T C, DOHERTY S, FAHEY D, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research:Atmospheres, 2013, 118: 5380-5552. doi: 10.1002/jgrd.50171 [9] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1: 221-227. doi: 10.1038/ngeo156 [10] KONDO Y, MOTEKI N, OSHIMA N, et al. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia[J]. Journal of Geophysical Research (Atmospheres), 2016, 121(9): 4691-4712. doi: 10.1002/2015JD024479 [11] COPPOLA A I, ZIOLKOWSKI L A, MASIELLO C A, et al. Aged black carbon in marine sediments and sinking particles[J]. Geophysical Research Letters, 2014, 41(7): 2427-2433. doi: 10.1002/2013GL059068 [12] DITTMAR T, PAENG J, GIHRING T M, et al. Discharge of dissolved black carbon from a fire-affected intertidal system[J]. Limnology and Oceanography, 2012, 57(4): 1171-1181. doi: 10.4319/lo.2012.57.4.1171 [13] WAGNER S, CAWLEY K M, ROSARIO-ORTIZ F L, et al. In-stream sources and links between particulate and dissolved black carbon following a wildfire[J]. Biogeochemistry, 2015, 124(1): 145-161. [14] JAFFÉ R, DING Y, NIGGEMANN J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130): 345-347. doi: 10.1126/science.1231476 [15] DING A J, HUANG X, NIE W, et al. Enhanced haze pollution by black carbon in megacities in China[J]. Geophysical Research Letters, 2016, 43(6): 2873-2879. doi: 10.1002/2016GL067745 [16] 夏星辉. 邻苯二甲酸酯在不同来源黑碳上的吸附特征研究[J]. 环境化学, 2012, 31(2): 268-268. XIA X H. Study on the adsorption characteristics of phthalates on black carbon from different sources[J]. Environmental Chemistry, 2012, 31(2): 268-268 (in Chinese).
[17] SEMPLE K T, RIDING M J, McALLISTER L E, et al. Impact of black carbon on the bioaccessibility of organic contaminants in soil[J]. Journal of Hazardous Materials, 2013, 261: 808-816. doi: 10.1016/j.jhazmat.2013.03.032 [18] SUGLIA S F, GRYPARIS A, WRIGHT R O, et al. Association of black carbon with cognition among children in a prospective birth cohort study[J]. American Journal of Epidemiology, 2008, 167(3): 280-286. [19] RYCHLIK K A, SECREST J R, LAU C, et al. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9): 3443-3448. [20] NICHOLS J L, OWENS E O, DUTTON S J, et al. Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease[J]. International Journal of Public Health, 2013, 58(5): 707-724. doi: 10.1007/s00038-013-0492-z [21] GRIESHOP A P, REYNOLDS C C O, KANDLIKAR M, et al. A black-carbon mitigation wedge[J]. Nature Geoscience, 2009, 2: 533-534. doi: 10.1038/ngeo595 [22] MASIELLO C A, DRUFFEL E R M, CURRIE L A. Radiocarbon measurements of black carbon in aerosols and ocean sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1025-1036. doi: 10.1016/S0016-7037(01)00831-6 [23] CAO J J, CHOW J C, TAO J, et al. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels[J]. Atmospheric Environment, 2011, 45(6): 1359-1363. doi: 10.1016/j.atmosenv.2010.10.056 [24] COPPOLA A I, DRUFFEL E R M. Cycling of black carbon in the ocean[J]. Geophysical Research Letters, 2016, 43(9): 4477-4482. doi: 10.1002/2016GL068574 [25] WANG X C, LI A C. Preservation of black carbon in the shelf sediments of the East China Sea[J]. Chinese Science Bulletin, 2007, 52(22): 3155-3161. doi: 10.1007/s11434-007-0452-1 [26] FENG J L, XI N N, SU X F, et al. Comparison of black carbon, total organic carbon, and PAH concentrations in surface sediments from two main rivers in Henan Province, China[J]. Environmental Forensics, 2019, 20(1): 39-49. doi: 10.1080/15275922.2019.1566288 [27] CHOW J C, WATSON J G, KUHNS H, et al. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study[J]. Chemosphere, 2004, 54(2): 185-208. doi: 10.1016/j.chemosphere.2003.07.004 [28] BARMAN N, GOKHALE S. Urban black carbon - source apportionment, emissions and long-range transport over the Brahmaputra River Valley[J]. The Science of the Total Environment, 2019, 693: 133577. doi: 10.1016/j.scitotenv.2019.07.383 [29] KANG H H, SHANG X N, ABDUMUTALLIP M, et al. Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES)[J]. The Science of the Total Environment, 2022, 837: 155817. doi: 10.1016/j.scitotenv.2022.155817 [30] WANG Z Y, ZHONG S Q, HE H D, et al. Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection[J]. Building and Environment, 2018, 141: 215-225. doi: 10.1016/j.buildenv.2018.04.042 [31] ZIOLKOWSKI L A. Radiocarbon of black carbon in marine dissolved organic carbon[M]. University of California, Irvine, 2009. [32] POOT A, QUIK J T K, VELD H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography. A, 2009, 1216(3): 613-622. doi: 10.1016/j.chroma.2008.08.011 [33] BLÄSING M, SHAO Y, LEHNDORFF E. Fuel regulation in inland navigation: Reduced soil black carbon deposition in river valleys in Germany[J]. Atmospheric Environment, 2015, 120: 376-384. doi: 10.1016/j.atmosenv.2015.09.004 [34] CAO J J, ZHU C S, HO K, et al. Light attenuation cross-section of black carbon in an urban atmosphere in Northern China[J]. Particuology, 2015, 18: 89-95. doi: 10.1016/j.partic.2014.04.011 [35] GUO B, WANG Y Q, ZHANG X Y, et al. Long-term variation of black carbon aerosol in China based on revised aethalometer monitoring data[J]. Atmosphere, 2020, 11(7): 684. doi: 10.3390/atmos11070684 [36] ZHANG Y, LI Y N, GUO J P, et al. The climatology and trend of black carbon in China from 12-year ground observations[J]. Climate Dynamics, 2019, 53(9): 5881-5892. [37] SINGH V, RAVINDRA K, SAHU L, et al. Trends of atmospheric black carbon concentration over the United Kingdom[J]. Atmospheric Environment, 2018, 178: 148-157. doi: 10.1016/j.atmosenv.2018.01.030 [38] KUTZNER R D, von SCHNEIDEMESSER E, KUIK F, et al. Long-term monitoring of black carbon across Germany[J]. Atmospheric Environment, 2018, 185: 41-52. doi: 10.1016/j.atmosenv.2018.04.039 [39] KRISTA L, NIEMI JARKKO V, MINNA A, et al. Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland[J]. Atmospheric Chemistry and Physics, 2021, 21(2): 1173-1189. doi: 10.5194/acp-21-1173-2021 [40] AHMED T, DUTKIEWICZ V A, KHAN A J, et al. Long term trends in Black Carbon Concentrations in the Northeastern United States[J]. Atmospheric Research, 2014, 137: 49-57. doi: 10.1016/j.atmosres.2013.10.003 [41] EL BARAMOUSSI E M, REN Y G, XUE C Y, et al. Nearly five-year continuous atmospheric measurements of black carbon over a suburban area in central France[J]. The Science of the Total Environment, 2023, 858(Pt 2): 159905. [42] ZANATTA M, GYSEL M, BUKOWIECKI N, et al. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe[J]. Atmospheric Environment, 2016, 145: 346-364. doi: 10.1016/j.atmosenv.2016.09.035 [43] SATURNO J, HOLANDA B A, PÖHLKER C, et al. Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12817-12843. doi: 10.5194/acp-18-12817-2018 [44] SHARMA S, LAVOUÉ D, CACHIER H, et al. Long-term trends of the black carbon concentrations in the Canadian Arctic[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D15): e2003jd004331. doi: 10.1029/2003JD004331 [45] ZHAO S Y, MING J, XIAO C D, et al. A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan[J]. Journal of Environmental Sciences (China), 2012, 24(1): 152-159. doi: 10.1016/S1001-0742(11)60739-0 [46] DAI M M, ZHU B, FANG C W, et al. Long-term variation and source apportionment of black carbon at Mt. waliguan, China[J]. Journal of Geophysical Research (Atmospheres), 2021, 126: e2021JD035273. doi: 10.1029/2021JD035273 [47] PU D Y, MENG R Q, WU H, et al. Black carbon evolution at WMO/GAW Station Mt. waliguan China and contribution area from 1994 to 2017[J]. Atmosphere, 2022, 13(4): 534. doi: 10.3390/atmos13040534 [48] KANAYA Y, PAN X L, MIYAKAWA T, et al. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia[J]. Atmospheric Chemistry and Physics, 2016, 16(16): 10689-10705. doi: 10.5194/acp-16-10689-2016 [49] KANAYA Y, YAMAJI K, MIYAKAWA T, et al. Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan[J]. Atmospheric Chemistry and Physics, 2020, 20(11): 6339-6356. doi: 10.5194/acp-20-6339-2020 [50] FERRERO L, CASTELLI M, FERRINI B S, et al. Impact of black carbon aerosol over Italian Basin valleys: High-resolution measurements along vertical profiles, radiative forcing and heating rate[J]. Atmospheric Chemistry and Physics, 2014, 14(18): 9641-9664. doi: 10.5194/acp-14-9641-2014 [51] SHI S S, ZHU B, LU W, et al. Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China[J]. The Science of the Total Environment, 2021, 756: 144135. doi: 10.1016/j.scitotenv.2020.144135 [52] WANG Z Y, CAO R H, LI B, et al. Characterizing nighttime vertical profiles of atmospheric particulate matter and ozone in a megacity of South China using unmanned aerial vehicle measurements[J]. Environmental Research, 2023, 236(Pt 2): 116854. [53] ZHAO S P, HE J J, DONG L X, et al. Contrasting vertical circulation between severe and light air pollution inside a deep basin: Results from the collaborative experiment of 3D boundary-layer meteorology and pollution at the Sichuan Basin (BLMP-SCB[J]. Bulletin of the American Meteorological Society, 2023, 104(2): E411-E434. doi: 10.1175/BAMS-D-22-0150.1 [54] LI X B, WANG D S, LU Q C, et al. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements[J]. Atmospheric Environment, 2018, 173: 62-71. doi: 10.1016/j.atmosenv.2017.11.009 [55] JIA H H, HUO J T, FU Q Y, et al. Atmospheric characteristics and population exposure assessment of black carbon at a regional representative site in the Yangtze River Delta Region, China based on the five-year monitoring[J]. The Science of the Total Environment, 2021, 777: 145990. doi: 10.1016/j.scitotenv.2021.145990 [56] BARRETT T E, PONETTE-GONZÁLEZ A, RINDY J, et al. Wet deposition of black carbon: A synthesis[J]. Atmospheric Environment, 2019, 213: 558-567. doi: 10.1016/j.atmosenv.2019.06.033 [57] WANG H Q, HE Q S, CHEN Y H, et al. Characterization of black carbon concentrations of haze with different intensities in Shanghai by a three-year field measurement[J]. Atmospheric Environment, 2014, 99: 536-545. doi: 10.1016/j.atmosenv.2014.10.025 [58] TAKETANI F, MIYAKAWA T, TAKIGAWA M, et al. Characteristics of atmospheric black carbon and other aerosol particles over the Arctic Ocean in early autumn 2016: Influence from biomass burning as assessed with observed microphysical properties and model simulations[J]. The Science of the Total Environment, 2022, 848: 157671. doi: 10.1016/j.scitotenv.2022.157671 [59] LIU H, PAN X L, LEI S D, et al. Vertical distribution of black carbon and its mixing state in the urban boundary layer in summer[J]. Atmospheric Chemistry and Physics, 2023, 23(12): 7225-7239. doi: 10.5194/acp-23-7225-2023 [60] LIANG Y, WU C, WU D, et al. Vertical distributions of atmospheric black carbon in dry and wet seasons observed at a 356-m meteorological tower in Shenzhen, South China[J]. The Science of the Total Environment, 2022, 853: 158657. doi: 10.1016/j.scitotenv.2022.158657 [61] 赵德龙, 周嵬, 盛久江, 等. 基于飞机观测不同天气条件下北京地区黑碳气溶胶的垂直分布及其混合态特性[J]. 环境化学, 2021, 40(5): 1405-1412. doi: 10.1002/etc.4993 ZHAO D L, ZHOU W, SHENG J J, et al. Vertical distribution and mixed state characteristics of black carbon aerosols in Beijing Area based on aircraft observation under different weather conditions[J]. Environmental Chemistry, 2021, 40(5): 1405-1412 (in Chinese). doi: 10.1002/etc.4993
[62] BABU S S, MOORTHY K K, MANCHANDA R K, et al. Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build “their own homes” up in the atmosphere?[J]. Geophysical Research Letters, 2011, 38(8): L08803. [63] TAN Y, WANG H L, SHI S S, et al. Annual variations of black carbon over the Yangtze River Delta from 2015 to 2018[J]. Journal of Environmental Sciences (China), 2020, 96: 72-84. doi: 10.1016/j.jes.2020.04.019 [64] TALUKDAR S, JANA S, MAITRA A, et al. Characteristics of black carbon concentration at a metropolitan city located near land–ocean boundary in Eastern India[J]. Atmospheric Research, 2015, 153: 526-534. doi: 10.1016/j.atmosres.2014.10.014 [65] VERMA S, PANI S K, BHANJA S N. Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in East India[J]. Chemosphere, 2013, 90(2): 260-269. doi: 10.1016/j.chemosphere.2012.06.063 [66] 高燕, 黄虹, 杨心怡, 等. 南昌前湖区域黑碳的分布特征与光学特性[J]. 环境化学, 2024, 43(3): 999-1009. doi: 10.7524/j.issn.0254-6108.2022091902 GAO Y, HUANG H, YANG X Y, et al. Distribution and optical properties of black carbon in Qianhu Area of Nanchang[J]. Environmental Chemistry, 2024, 43(3): 999-1009(in Chinese). doi: 10.7524/j.issn.0254-6108.2022091902
[67] 周变红, 曹夏, 张容端, 等. 宝鸡高新区春节前后大气中黑碳浓度特征及来源解析[J]. 环境化学, 2020, 39(7): 1754-1762. doi: 10.7524/j.issn.0254-6108.2019113001 ZHOU B H, CAO X, ZHANG R D, et al. Characteristics and sources analysis of black carbon concentration in the atmosphere of Baoji High-tech Zone around the Spring Festival[J]. Environmental Chemistry, 2020, 39(7): 1754-1762 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019113001
[68] 曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析[J]. 环境化学, 2020, 39(11): 3072-3082. doi: 10.7524/j.issn.0254-6108.2020061501 CAO X, ZHOU B H, WANG J, et al. Characteristics and source analysis of black carbon aerosol in Xi’an Urban Area[J]. Environmental Chemistry, 2020, 39(11): 3072-3082 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020061501
[69] SUN J X, WANG Z, ZHOU W, et al. Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China[J]. Atmospheric Chemistry and Physics, 2022, 22(1): 561-575. doi: 10.5194/acp-22-561-2022 [70] LI H, HUANG K, FU Q Y, et al. Airborne black carbon variations during the COVID-19 lockdown in the Yangtze River Delta megacities suggest actions to curb global warming[J]. Environmental Chemistry Letters, 2022, 20(1): 71-80. doi: 10.1007/s10311-021-01327-3 [71] QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans[J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8 [72] MORI Y, NISHIOKA J, FUJIO S, et al. Transport of dissolved black carbon from marginal sea sediments to the western North Pacific[J]. Progress in Oceanography, 2021, 193: 102552. doi: 10.1016/j.pocean.2021.102552 [73] MARI X, CHU VAN T, GUINOT B, et al. Seasonal dynamics of atmospheric and river inputs of black carbon, and impacts on biogeochemical cycles in Halong Bay, Vietnam[J]. Elementa:Science of the Anthropocene, 2017, 5: 75. doi: 10.1525/elementa.255 [74] STUBBINS A, NIGGEMANN J, DITTMAR T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5): 1661-1670. doi: 10.5194/bg-9-1661-2012 [75] SCHMIDT M W I. Carbon budget in the black[J]. Nature, 2004, 427: 305-307. doi: 10.1038/427305a [76] MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1/2/3/4): 201-213. [77] COPPOLA A I, WIEDEMEIER D B, GALY V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11: 584-588. doi: 10.1038/s41561-018-0159-8 [78] FENG N, YANG W F, ZHAO X F, et al. Semi-enclosed bays serve as hotspots for black carbon burial: A case study in Jiaozhou Bay, western Yellow Sea[J]. The Science of the Total Environment, 2021, 797: 149100. doi: 10.1016/j.scitotenv.2021.149100 [79] FANG Z M, YANG W F, STUBBINS A, et al. Spatial characteristics and removal of dissolved black carbon in the western Arctic Ocean and Bering Sea[J]. Geochimica et Cosmochimica Acta, 2021, 304: 178-190. doi: 10.1016/j.gca.2021.04.024 [80] FANG Y, CHEN Y J, HU L M, et al. Large-river dominated black carbon flux and budget: A case study of the estuarine-inner shelf of East China Sea, China[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2489-2496. [81] ROEBUCK J A Jr, MEDEIROS P M, LETOURNEAU M L, et al. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha River, GA[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(9): 3055-3071. doi: 10.1029/2018JG004406 [82] JONES M W, de ARAGÃO L E O C, DITTMAR T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7): 849-874. doi: 10.1029/2018GB006140 [83] GAO H, LI H X, SHI J Q, et al. Black carbon, soil organic matter molecular signatures under different land uses in Shenyang, China and relationship with PAHs[J]. Chemosphere, 2023, 342: 140089. doi: 10.1016/j.chemosphere.2023.140089 [84] LIU Y H, WANG X S, GUO Y H, et al. Association of black carbon with heavy metals and magnetic properties in soils adjacent to a cement plant, Xuzhou (China)[J]. Journal of Applied Geophysics, 2019, 170: 103802. doi: 10.1016/j.jappgeo.2019.06.018 [85] HE Y, ZHANG G L. Historical record of black carbon in urban soils and its environmental implications[J]. Environmental Pollution, 2009, 157(10): 2684-2688. doi: 10.1016/j.envpol.2009.05.019 [86] LIU S D, XIA X H, ZHAI Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 2011, 82(2): 223-228. doi: 10.1016/j.chemosphere.2010.10.017 [87] ZONG Y T, XIAO Q, LU S G. Black carbon (BC) of urban topsoil of steel industrial city (Anshan), Northeastern China: Concentration, source identification and environmental implication[J]. The Science of the Total Environment, 2016, 569/570: 990-996. doi: 10.1016/j.scitotenv.2016.06.097 [88] KOPECKÝ M, KOLÁŘ L, VÁCHALOVÁ R, et al. Black carbon and its effect on carbon sequestration in soil[J]. Agronomy, 2021, 11(11): 2261. doi: 10.3390/agronomy11112261 [89] RAWLINS B G, VANE C H, KIM A W, et al. Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas[J]. Soil Use and Management, 2008, 24(1): 47-59. doi: 10.1111/j.1475-2743.2007.00132.x [90] HAMILTON G A, HARTNETT H E. Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem[J]. Organic Geochemistry, 2013, 59: 87-94. doi: 10.1016/j.orggeochem.2013.04.003 [91] PAROISSIEN J B, ORTON T, SABY N, et al. Mapping black carbon content in topsoils of central France[J]. Soil Use and Management, 2012, 28(4): 488-496. doi: 10.1111/j.1475-2743.2012.00452.x [92] GAUTAM S, YAN F P, KANG S C, et al. Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region[J]. Environmental Science and Pollution Research International, 2020, 27(3): 2670-2676. doi: 10.1007/s11356-019-07121-7 [93] KARTHIK V, BHASKAR B V, RAMACHANDRAN S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. The Science of the Total Environment, 2023, 854: 158647. doi: 10.1016/j.scitotenv.2022.158647 [94] ZHAN C L, CAO J J, HAN Y M, et al. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China[J]. European Journal of Soil Science, 2015, 66(3): 525-534. doi: 10.1111/ejss.12236 [95] FANG Y, CHEN Y J, LIN T, et al. Spatiotemporal trends of elemental carbon and char/soot ratios in five sediment cores from Eastern China marginal seas: Indicators of anthropogenic activities and transport patterns[J]. Environmental Science & Technology, 2018, 52(17): 9704-9712. [96] NEUPANE B, KANG S C, CHEN P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan-Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10): 5641-5651. [97] REN P, LIU Y G, SHI X F, et al. Sources and sink of black carbon in Arctic Ocean sediments[J]. The Science of the Total Environment, 2019, 689: 912-920. doi: 10.1016/j.scitotenv.2019.06.437 [98] LORENZ K, KANDELER E. Biochemical characterization of urban soil profiles from Stuttgart, Germany[J]. Soil Biology and Biochemistry, 2005, 37(7): 1373-1385. doi: 10.1016/j.soilbio.2004.12.009 [99] EDMONDSON J L, STOTT I, POTTER J, et al. Black carbon contribution to organic carbon stocks in urban soil[J]. Environmental Science & Technology, 2015, 49(14): 8339-8346. [100] RUPAKHETI D, KANG S C, RUPAKHETI M, et al. Black carbon in surface soil and its sources in three central Asian countries[J]. Archives of Environmental Contamination and Toxicology, 2021, 80(3): 558-566. doi: 10.1007/s00244-021-00832-4 [101] CZIMCZIK C I, PRESTON C M, SCHMIDT M W I, et al. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)[J]. Global Biogeochemical Cycles, 2003, 17(1): 1020. [102] LI Y, KANG S C, CHEN J Z, et al. Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil[J]. The Science of the Total Environment, 2019, 686: 1030-1038. doi: 10.1016/j.scitotenv.2019.05.469 [103] CLARK J S, PATTERSON W A. Background and local charcoal in sediments: Scales of fire evidence in the paleorecord[C]//Clark JS, Cachier H, Goldammer JG, et al. Sediment Records of Biomass Burning and Global Change. Berlin, Heidelberg: Springer, 1997: 23-48. [104] SRIVASTAVA R, ASUTOSH A, SABU P, et al. Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning[J]. Environmental Pollution, 2021, 276: 116645. doi: 10.1016/j.envpol.2021.116645 [105] ZHAO S Y, TIE X X, CAO J J, et al. Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong Region, China[J]. Atmospheric Research, 2015, 164/165: 286-296. doi: 10.1016/j.atmosres.2015.05.016 [106] LIU J F, FAN S M, HOROWITZ L W, et al. Evaluation of factors controlling long-range transport of black carbon to the Arctic[J]. Journal of Geophysical Research, 2011, 116(D4): D04307. [107] TEXTOR C, SCHULZ M, GUIBERT S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom[J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1777-1813. doi: 10.5194/acp-6-1777-2006 [108] WU M X, LIU X H, ZHANG L M, et al. Impacts of aerosol dry deposition on black carbon spatial distributions and radiative effects in the community atmosphere model CAM5[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(5): 1150-1171. doi: 10.1029/2017MS001219 [109] KELLY RACHEL L, BIAN X P, FEAKINS SARAH J, et al. Delivery of metals and dissolved black carbon to the southern California coastal ocean via aerosols and floodwaters following the 2017 Thomas fire[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(3): e2020JG006117. doi: 10.1029/2020JG006117 [110] CAPE J N, COYLE M, DUMITREAN P. The atmospheric lifetime of black carbon[J]. Atmospheric Environment, 2012, 59: 256-263. doi: 10.1016/j.atmosenv.2012.05.030 [111] ODHIAMBO M, ROUTH J. Does black carbon contribute to eutrophication in large lakes?[J]. Current Pollution Reports, 2016, 2(4): 236-238. doi: 10.1007/s40726-016-0042-4 [112] KHAN A L, JAFFÉ R, DING Y, et al. Dissolved black carbon in Antarctic Lakes: Chemical signatures of past and present sources[J]. Geophysical Research Letters, 2016, 43(11): 5750-5757. doi: 10.1002/2016GL068609 [113] JURADO E, DACHS J, DUARTE C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34): 7931-7939. doi: 10.1016/j.atmosenv.2008.07.029 [114] JONES M W, QUINE T A, de REZENDE C E, et al. Do regional aerosols contribute to the riverine export of dissolved black carbon?[J]. Journal of Geophysical Research:Biogeosciences, 2017, 122(11): 2925-2938. doi: 10.1002/2017JG004126 [115] MANNINO A, RODGER HARVEY H. Black carbon in estuarine and coastal ocean dissolved organic matter[J]. Limnology and Oceanography, 2004, 49(3): 735-740. doi: 10.4319/lo.2004.49.3.0735 [116] WAGNER S, BRANDES J, SPENCER R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1): 5064. doi: 10.1038/s41467-019-13111-7 [117] LIU J K, HAN G L. Tracing riverine particulate black carbon sources in Xijiang River Basin: Insight from stable isotopic composition and Bayesian mixing model[J]. Water Research, 2021, 194: 116932. doi: 10.1016/j.watres.2021.116932 [118] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 273-298. doi: 10.1146/annurev-earth-060614-105038 [119] DAN S F, CUI D Y, YANG B, et al. Sources, burial flux and mass inventory of black carbon in surface sediments of the Daya Bay, a typical mariculture bay of China[J]. Marine Pollution Bulletin, 2022, 179: 113708. doi: 10.1016/j.marpolbul.2022.113708 [120] RODIONOV A, AMELUNG W, PEINEMANN N, et al. Black carbon in grassland ecosystems of the world[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3013. [121] XU X M, HONG Y H, ZHOU Q Z, et al. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China[J]. Journal of Oceanology and Limnology, 2018, 36(1): 114-127. doi: 10.1007/s00343-017-6214-2 [122] STANISZEWSKA M, BURSKA D, SAPOTA G, et al. The relationship between the concentrations and distribution of organic pollutants and black carbon content in benthic sediments in the Gulf of Gdańsk, Baltic Sea[J]. Marine Pollution Bulletin, 2011, 62(7): 1464-1475. doi: 10.1016/j.marpolbul.2011.04.013 [123] STANISZEWSKA M, KONIECKO I, FALKOWSKA L, et al. The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic)[J]. Journal of Environmental Sciences, 2016, 41: 24-32. doi: 10.1016/j.jes.2015.04.009 [124] GROSSMAN A, GHOSH U. Measurement of activated carbon and other black carbons in sediments[J]. Chemosphere, 2009, 75(4): 469-475. doi: 10.1016/j.chemosphere.2008.12.054 [125] DOMEIGNOZ-HORTA L A, POLD G, LIU X J A, et al. Microbial diversity drives carbon use efficiency in a model soil[J]. Nature Communications, 2020, 11(1): 3684. doi: 10.1038/s41467-020-17502-z [126] LIU H W, WANG J J, SUN X, et al. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China[J]. The Science of the Total Environment, 2023, 884: 163835. doi: 10.1016/j.scitotenv.2023.163835 [127] CRISPO M, CAMERON D D, MEREDITH W, et al. Opening the black box: Soil microcosm experiments reveal soot black carbon short-term oxidation and influence on soil organic carbon mineralisation[J]. The Science of the Total Environment, 2021, 801: 149659. doi: 10.1016/j.scitotenv.2021.149659 [128] LIAN F, WANG Z Y, XING B S. Nano-black carbon (biochar) released from pyrogenic carbonaceous matter as a super suspending agent in water/soil environments[J]. Biochar, 2021, 3(1): 1-3. doi: 10.1007/s42773-020-00075-x [129] DITTMAR T, de REZENDE C E, MANECKI M, et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome[J]. Nature Geoscience, 2012, 5: 618-622. doi: 10.1038/ngeo1541 [130] LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [131] LIU Y X, CHEN Y, WANG Y Y, et al. Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon[J]. Land Degradation & Development, 2018, 29(11): 3985-3994. [132] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059-2077. doi: 10.1175/BAMS-D-14-00110.1 [133] LIU Y, WU L N, HUANG S, et al. Sources, size-resolved deposition in the human respiratory tract and health risks of submicron black carbon in urban atmosphere in Pearl River Delta, China[J]. The Science of the Total Environment, 2023, 891: 164391. doi: 10.1016/j.scitotenv.2023.164391 [134] CHEN X S, WANG Z F, YU F Q, et al. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model[J]. Atmospheric Environment, 2017, 163: 44-56. doi: 10.1016/j.atmosenv.2017.05.016 [135] FANG Y, CHEN Y J, HUANG G P, et al. Particulate and dissolved black carbon in coastal China Seas: Spatiotemporal variations, dynamics, and potential implications[J]. Environmental Science & Technology, 2021, 55(1): 788-796. [136] RAHUL P R C, BHAWAR R L, AYANTIKA D C, et al. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley[J]. Scientific Reports, 2014, 4: 3670. doi: 10.1038/srep03670 [137] WINIGER P, ANDERSSON A, ECKHARDT S, et al. The sources of atmospheric black carbon at a European gateway to the Arctic[J]. Nature Communications, 2016, 7: 12776. doi: 10.1038/ncomms12776 [138] CHEN L, ZHANG F, YAN P, et al. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere[J]. Environmental Pollution, 2020, 263(Pt B): 114507. [139] LI Z Y, ZHI G R, ZHANG Y Z, et al. The integrating sphere system plus in situ absorption monitoring: A new scheme to study absorption enhancement of black carbon in ambient aerosols[J]. The Science of the Total Environment, 2023, 892: 164355. doi: 10.1016/j.scitotenv.2023.164355 [140] JANSSEN N A H, HOEK G, SIMIC-LAWSON M, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5[J]. Environmental Health Perspectives, 2011, 119(12): 1691-1699. doi: 10.1289/ehp.1003369 [141] KRUGER B R, HAUSNER M B, CHELLMAN N, et al. Dissolved black carbon as a potential driver of surface water heating dynamics in wildfire-impacted regions: A case study from Pyramid Lake, NV, USA[J]. The Science of the Total Environment, 2023, 888: 164141. doi: 10.1016/j.scitotenv.2023.164141 [142] DOMÍNGUEZ-VARGAS J R, NAVARRO-RODRÍGUEZ J A, de HEREDIA J B, et al. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 302-308. [143] LUO L, LOU L P, CUI X Y, et al. Sorption and desorption of pentachlorophenol to black carbon of three different origins[J]. Journal of Hazardous Materials, 2011, 185(2/3): 639-646. [144] TRUBETSKAYA A, KLING J, ERSHAG O, et al. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black[J]. Journal of Hazardous Materials, 2019, 365: 846-856. doi: 10.1016/j.jhazmat.2018.09.061 [145] 程广焕, 孙明洋, 罗玲, 等. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007 CHENG G H, SUN M Y, LUO L, et al. Locking and biodegradation effects of hydrophobic organic contaminants(HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.007
[146] CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental Science & Technology, 2013, 47(18): 10349-10355. [147] WANG D X, HUANG D Y, WU S, et al. Pyrogenic carbon initiated the generation of hydroxyl radicals from the oxidation of sulfide[J]. Environmental Science & Technology, 2021, 55(9): 6001-6011. [148] XU W Q, PIGNATELLO J J, MITCH W A. Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides[J]. Environmental Science & Technology, 2015, 49(6): 3419-3426. [149] XU K, LIU Y X, WANG X F, et al. Combined toxicity of functionalized nano-carbon black and cadmium on Eisenia fetida coelomocytes: The role of adsorption[J]. Journal of Hazardous Materials, 2020, 398: 122815. doi: 10.1016/j.jhazmat.2020.122815 [150] LIU Y, CHEN Z F, WANG J X, et al. Distribution characteristics of lipophilic marine phycotoxins in the sediment: A case study in Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2021, 162: 111908. doi: 10.1016/j.marpolbul.2020.111908 [151] LIU H T, GE Q, XU F C, et al. Dissolved black carbon induces fast photo-reduction of silver ions under simulated sunlight[J]. Science of the Total Environment, 2021, 775: 145897. doi: 10.1016/j.scitotenv.2021.145897 [152] PANDEY S D, ROCHA L C, PEREIRA G, et al. Properties of carbon particles in archeological and natural Amazon rainforest soils[J]. CATENA, 2020, 194: 104687. doi: 10.1016/j.catena.2020.104687