[1] GOLDBERG E D, Black carbon in the environment: Properties and distribution[M]. New York: John Wiley & Sons, 1985: 198.
[2] PETZOLD A, OGREN J A, FIEBIG M, et al. Recommendations for reporting “black carbon” measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8365-8379. doi: 10.5194/acp-13-8365-2013
[3] KUHLBUSCH T A J, CRUTZEN P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochemical Cycles, 1995, 9(4): 491-501. doi: 10.1029/95GB02742
[4] U. S. EPA, Report to congress on black carbon[R]. United States Environmental Protection Agency, 2012.
[5] MARQUES J S J, DITTMAR T, NIGGEMANN J, et al. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5: 11.
[6] MITRA S, BIANCHI T S, McKEE B A, et al. Black carbon from the Mississippi River: Quantities, sources, and potential implications for the global carbon cycle[J]. Environmental Science & Technology, 2002, 36(11): 2296-2302.
[7] HUANG C C, MENG L Z, HE Y, et al. Spatial variation of particulate black carbon, and its sources in a large eutrophic urban lake in China[J]. The Science of the Total Environment, 2022, 803: 150057. doi: 10.1016/j.scitotenv.2021.150057
[8] BOND T C, DOHERTY S, FAHEY D, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research:Atmospheres, 2013, 118: 5380-5552. doi: 10.1002/jgrd.50171
[9] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1: 221-227. doi: 10.1038/ngeo156
[10] KONDO Y, MOTEKI N, OSHIMA N, et al. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia[J]. Journal of Geophysical Research (Atmospheres), 2016, 121(9): 4691-4712. doi: 10.1002/2015JD024479
[11] COPPOLA A I, ZIOLKOWSKI L A, MASIELLO C A, et al. Aged black carbon in marine sediments and sinking particles[J]. Geophysical Research Letters, 2014, 41(7): 2427-2433. doi: 10.1002/2013GL059068
[12] DITTMAR T, PAENG J, GIHRING T M, et al. Discharge of dissolved black carbon from a fire-affected intertidal system[J]. Limnology and Oceanography, 2012, 57(4): 1171-1181. doi: 10.4319/lo.2012.57.4.1171
[13] WAGNER S, CAWLEY K M, ROSARIO-ORTIZ F L, et al. In-stream sources and links between particulate and dissolved black carbon following a wildfire[J]. Biogeochemistry, 2015, 124(1): 145-161.
[14] JAFFÉ R, DING Y, NIGGEMANN J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130): 345-347. doi: 10.1126/science.1231476
[15] DING A J, HUANG X, NIE W, et al. Enhanced haze pollution by black carbon in megacities in China[J]. Geophysical Research Letters, 2016, 43(6): 2873-2879. doi: 10.1002/2016GL067745
[16] 夏星辉. 邻苯二甲酸酯在不同来源黑碳上的吸附特征研究[J]. 环境化学, 2012, 31(2): 268-268. XIA X H. Study on the adsorption characteristics of phthalates on black carbon from different sources[J]. Environmental Chemistry, 2012, 31(2): 268-268 (in Chinese).
[17] SEMPLE K T, RIDING M J, McALLISTER L E, et al. Impact of black carbon on the bioaccessibility of organic contaminants in soil[J]. Journal of Hazardous Materials, 2013, 261: 808-816. doi: 10.1016/j.jhazmat.2013.03.032
[18] SUGLIA S F, GRYPARIS A, WRIGHT R O, et al. Association of black carbon with cognition among children in a prospective birth cohort study[J]. American Journal of Epidemiology, 2008, 167(3): 280-286.
[19] RYCHLIK K A, SECREST J R, LAU C, et al. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9): 3443-3448.
[20] NICHOLS J L, OWENS E O, DUTTON S J, et al. Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease[J]. International Journal of Public Health, 2013, 58(5): 707-724. doi: 10.1007/s00038-013-0492-z
[21] GRIESHOP A P, REYNOLDS C C O, KANDLIKAR M, et al. A black-carbon mitigation wedge[J]. Nature Geoscience, 2009, 2: 533-534. doi: 10.1038/ngeo595
[22] MASIELLO C A, DRUFFEL E R M, CURRIE L A. Radiocarbon measurements of black carbon in aerosols and ocean sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1025-1036. doi: 10.1016/S0016-7037(01)00831-6
[23] CAO J J, CHOW J C, TAO J, et al. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels[J]. Atmospheric Environment, 2011, 45(6): 1359-1363. doi: 10.1016/j.atmosenv.2010.10.056
[24] COPPOLA A I, DRUFFEL E R M. Cycling of black carbon in the ocean[J]. Geophysical Research Letters, 2016, 43(9): 4477-4482. doi: 10.1002/2016GL068574
[25] WANG X C, LI A C. Preservation of black carbon in the shelf sediments of the East China Sea[J]. Chinese Science Bulletin, 2007, 52(22): 3155-3161. doi: 10.1007/s11434-007-0452-1
[26] FENG J L, XI N N, SU X F, et al. Comparison of black carbon, total organic carbon, and PAH concentrations in surface sediments from two main rivers in Henan Province, China[J]. Environmental Forensics, 2019, 20(1): 39-49. doi: 10.1080/15275922.2019.1566288
[27] CHOW J C, WATSON J G, KUHNS H, et al. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study[J]. Chemosphere, 2004, 54(2): 185-208. doi: 10.1016/j.chemosphere.2003.07.004
[28] BARMAN N, GOKHALE S. Urban black carbon - source apportionment, emissions and long-range transport over the Brahmaputra River Valley[J]. The Science of the Total Environment, 2019, 693: 133577. doi: 10.1016/j.scitotenv.2019.07.383
[29] KANG H H, SHANG X N, ABDUMUTALLIP M, et al. Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES)[J]. The Science of the Total Environment, 2022, 837: 155817. doi: 10.1016/j.scitotenv.2022.155817
[30] WANG Z Y, ZHONG S Q, HE H D, et al. Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection[J]. Building and Environment, 2018, 141: 215-225. doi: 10.1016/j.buildenv.2018.04.042
[31] ZIOLKOWSKI L A. Radiocarbon of black carbon in marine dissolved organic carbon[M]. University of California, Irvine, 2009.
[32] POOT A, QUIK J T K, VELD H, et al. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods[J]. Journal of Chromatography. A, 2009, 1216(3): 613-622. doi: 10.1016/j.chroma.2008.08.011
[33] BLÄSING M, SHAO Y, LEHNDORFF E. Fuel regulation in inland navigation: Reduced soil black carbon deposition in river valleys in Germany[J]. Atmospheric Environment, 2015, 120: 376-384. doi: 10.1016/j.atmosenv.2015.09.004
[34] CAO J J, ZHU C S, HO K, et al. Light attenuation cross-section of black carbon in an urban atmosphere in Northern China[J]. Particuology, 2015, 18: 89-95. doi: 10.1016/j.partic.2014.04.011
[35] GUO B, WANG Y Q, ZHANG X Y, et al. Long-term variation of black carbon aerosol in China based on revised aethalometer monitoring data[J]. Atmosphere, 2020, 11(7): 684. doi: 10.3390/atmos11070684
[36] ZHANG Y, LI Y N, GUO J P, et al. The climatology and trend of black carbon in China from 12-year ground observations[J]. Climate Dynamics, 2019, 53(9): 5881-5892.
[37] SINGH V, RAVINDRA K, SAHU L, et al. Trends of atmospheric black carbon concentration over the United Kingdom[J]. Atmospheric Environment, 2018, 178: 148-157. doi: 10.1016/j.atmosenv.2018.01.030
[38] KUTZNER R D, von SCHNEIDEMESSER E, KUIK F, et al. Long-term monitoring of black carbon across Germany[J]. Atmospheric Environment, 2018, 185: 41-52. doi: 10.1016/j.atmosenv.2018.04.039
[39] KRISTA L, NIEMI JARKKO V, MINNA A, et al. Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland[J]. Atmospheric Chemistry and Physics, 2021, 21(2): 1173-1189. doi: 10.5194/acp-21-1173-2021
[40] AHMED T, DUTKIEWICZ V A, KHAN A J, et al. Long term trends in Black Carbon Concentrations in the Northeastern United States[J]. Atmospheric Research, 2014, 137: 49-57. doi: 10.1016/j.atmosres.2013.10.003
[41] EL BARAMOUSSI E M, REN Y G, XUE C Y, et al. Nearly five-year continuous atmospheric measurements of black carbon over a suburban area in central France[J]. The Science of the Total Environment, 2023, 858(Pt 2): 159905.
[42] ZANATTA M, GYSEL M, BUKOWIECKI N, et al. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe[J]. Atmospheric Environment, 2016, 145: 346-364. doi: 10.1016/j.atmosenv.2016.09.035
[43] SATURNO J, HOLANDA B A, PÖHLKER C, et al. Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12817-12843. doi: 10.5194/acp-18-12817-2018
[44] SHARMA S, LAVOUÉ D, CACHIER H, et al. Long-term trends of the black carbon concentrations in the Canadian Arctic[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D15): e2003jd004331. doi: 10.1029/2003JD004331
[45] ZHAO S Y, MING J, XIAO C D, et al. A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan[J]. Journal of Environmental Sciences (China), 2012, 24(1): 152-159. doi: 10.1016/S1001-0742(11)60739-0
[46] DAI M M, ZHU B, FANG C W, et al. Long-term variation and source apportionment of black carbon at Mt. waliguan, China[J]. Journal of Geophysical Research (Atmospheres), 2021, 126: e2021JD035273. doi: 10.1029/2021JD035273
[47] PU D Y, MENG R Q, WU H, et al. Black carbon evolution at WMO/GAW Station Mt. waliguan China and contribution area from 1994 to 2017[J]. Atmosphere, 2022, 13(4): 534. doi: 10.3390/atmos13040534
[48] KANAYA Y, PAN X L, MIYAKAWA T, et al. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia[J]. Atmospheric Chemistry and Physics, 2016, 16(16): 10689-10705. doi: 10.5194/acp-16-10689-2016
[49] KANAYA Y, YAMAJI K, MIYAKAWA T, et al. Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan[J]. Atmospheric Chemistry and Physics, 2020, 20(11): 6339-6356. doi: 10.5194/acp-20-6339-2020
[50] FERRERO L, CASTELLI M, FERRINI B S, et al. Impact of black carbon aerosol over Italian Basin valleys: High-resolution measurements along vertical profiles, radiative forcing and heating rate[J]. Atmospheric Chemistry and Physics, 2014, 14(18): 9641-9664. doi: 10.5194/acp-14-9641-2014
[51] SHI S S, ZHU B, LU W, et al. Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China[J]. The Science of the Total Environment, 2021, 756: 144135. doi: 10.1016/j.scitotenv.2020.144135
[52] WANG Z Y, CAO R H, LI B, et al. Characterizing nighttime vertical profiles of atmospheric particulate matter and ozone in a megacity of South China using unmanned aerial vehicle measurements[J]. Environmental Research, 2023, 236(Pt 2): 116854.
[53] ZHAO S P, HE J J, DONG L X, et al. Contrasting vertical circulation between severe and light air pollution inside a deep basin: Results from the collaborative experiment of 3D boundary-layer meteorology and pollution at the Sichuan Basin (BLMP-SCB[J]. Bulletin of the American Meteorological Society, 2023, 104(2): E411-E434. doi: 10.1175/BAMS-D-22-0150.1
[54] LI X B, WANG D S, LU Q C, et al. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements[J]. Atmospheric Environment, 2018, 173: 62-71. doi: 10.1016/j.atmosenv.2017.11.009
[55] JIA H H, HUO J T, FU Q Y, et al. Atmospheric characteristics and population exposure assessment of black carbon at a regional representative site in the Yangtze River Delta Region, China based on the five-year monitoring[J]. The Science of the Total Environment, 2021, 777: 145990. doi: 10.1016/j.scitotenv.2021.145990
[56] BARRETT T E, PONETTE-GONZÁLEZ A, RINDY J, et al. Wet deposition of black carbon: A synthesis[J]. Atmospheric Environment, 2019, 213: 558-567. doi: 10.1016/j.atmosenv.2019.06.033
[57] WANG H Q, HE Q S, CHEN Y H, et al. Characterization of black carbon concentrations of haze with different intensities in Shanghai by a three-year field measurement[J]. Atmospheric Environment, 2014, 99: 536-545. doi: 10.1016/j.atmosenv.2014.10.025
[58] TAKETANI F, MIYAKAWA T, TAKIGAWA M, et al. Characteristics of atmospheric black carbon and other aerosol particles over the Arctic Ocean in early autumn 2016: Influence from biomass burning as assessed with observed microphysical properties and model simulations[J]. The Science of the Total Environment, 2022, 848: 157671. doi: 10.1016/j.scitotenv.2022.157671
[59] LIU H, PAN X L, LEI S D, et al. Vertical distribution of black carbon and its mixing state in the urban boundary layer in summer[J]. Atmospheric Chemistry and Physics, 2023, 23(12): 7225-7239. doi: 10.5194/acp-23-7225-2023
[60] LIANG Y, WU C, WU D, et al. Vertical distributions of atmospheric black carbon in dry and wet seasons observed at a 356-m meteorological tower in Shenzhen, South China[J]. The Science of the Total Environment, 2022, 853: 158657. doi: 10.1016/j.scitotenv.2022.158657
[61] 赵德龙, 周嵬, 盛久江, 等. 基于飞机观测不同天气条件下北京地区黑碳气溶胶的垂直分布及其混合态特性[J]. 环境化学, 2021, 40(5): 1405-1412. doi: 10.1002/etc.4993 ZHAO D L, ZHOU W, SHENG J J, et al. Vertical distribution and mixed state characteristics of black carbon aerosols in Beijing Area based on aircraft observation under different weather conditions[J]. Environmental Chemistry, 2021, 40(5): 1405-1412 (in Chinese). doi: 10.1002/etc.4993
[62] BABU S S, MOORTHY K K, MANCHANDA R K, et al. Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build “their own homes” up in the atmosphere?[J]. Geophysical Research Letters, 2011, 38(8): L08803.
[63] TAN Y, WANG H L, SHI S S, et al. Annual variations of black carbon over the Yangtze River Delta from 2015 to 2018[J]. Journal of Environmental Sciences (China), 2020, 96: 72-84. doi: 10.1016/j.jes.2020.04.019
[64] TALUKDAR S, JANA S, MAITRA A, et al. Characteristics of black carbon concentration at a metropolitan city located near land–ocean boundary in Eastern India[J]. Atmospheric Research, 2015, 153: 526-534. doi: 10.1016/j.atmosres.2014.10.014
[65] VERMA S, PANI S K, BHANJA S N. Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in East India[J]. Chemosphere, 2013, 90(2): 260-269. doi: 10.1016/j.chemosphere.2012.06.063
[66] 高燕, 黄虹, 杨心怡, 等. 南昌前湖区域黑碳的分布特征与光学特性[J]. 环境化学, 2024, 43(3): 999-1009. doi: 10.7524/j.issn.0254-6108.2022091902 GAO Y, HUANG H, YANG X Y, et al. Distribution and optical properties of black carbon in Qianhu Area of Nanchang[J]. Environmental Chemistry, 2024, 43(3): 999-1009(in Chinese). doi: 10.7524/j.issn.0254-6108.2022091902
[67] 周变红, 曹夏, 张容端, 等. 宝鸡高新区春节前后大气中黑碳浓度特征及来源解析[J]. 环境化学, 2020, 39(7): 1754-1762. doi: 10.7524/j.issn.0254-6108.2019113001 ZHOU B H, CAO X, ZHANG R D, et al. Characteristics and sources analysis of black carbon concentration in the atmosphere of Baoji High-tech Zone around the Spring Festival[J]. Environmental Chemistry, 2020, 39(7): 1754-1762 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019113001
[68] 曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析[J]. 环境化学, 2020, 39(11): 3072-3082. doi: 10.7524/j.issn.0254-6108.2020061501 CAO X, ZHOU B H, WANG J, et al. Characteristics and source analysis of black carbon aerosol in Xi’an Urban Area[J]. Environmental Chemistry, 2020, 39(11): 3072-3082 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020061501
[69] SUN J X, WANG Z, ZHOU W, et al. Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China[J]. Atmospheric Chemistry and Physics, 2022, 22(1): 561-575. doi: 10.5194/acp-22-561-2022
[70] LI H, HUANG K, FU Q Y, et al. Airborne black carbon variations during the COVID-19 lockdown in the Yangtze River Delta megacities suggest actions to curb global warming[J]. Environmental Chemistry Letters, 2022, 20(1): 71-80. doi: 10.1007/s10311-021-01327-3
[71] QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans[J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8
[72] MORI Y, NISHIOKA J, FUJIO S, et al. Transport of dissolved black carbon from marginal sea sediments to the western North Pacific[J]. Progress in Oceanography, 2021, 193: 102552. doi: 10.1016/j.pocean.2021.102552
[73] MARI X, CHU VAN T, GUINOT B, et al. Seasonal dynamics of atmospheric and river inputs of black carbon, and impacts on biogeochemical cycles in Halong Bay, Vietnam[J]. Elementa:Science of the Anthropocene, 2017, 5: 75. doi: 10.1525/elementa.255
[74] STUBBINS A, NIGGEMANN J, DITTMAR T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5): 1661-1670. doi: 10.5194/bg-9-1661-2012
[75] SCHMIDT M W I. Carbon budget in the black[J]. Nature, 2004, 427: 305-307. doi: 10.1038/427305a
[76] MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1/2/3/4): 201-213.
[77] COPPOLA A I, WIEDEMEIER D B, GALY V, et al. Global-scale evidence for the refractory nature of riverine black carbon[J]. Nature Geoscience, 2018, 11: 584-588. doi: 10.1038/s41561-018-0159-8
[78] FENG N, YANG W F, ZHAO X F, et al. Semi-enclosed bays serve as hotspots for black carbon burial: A case study in Jiaozhou Bay, western Yellow Sea[J]. The Science of the Total Environment, 2021, 797: 149100. doi: 10.1016/j.scitotenv.2021.149100
[79] FANG Z M, YANG W F, STUBBINS A, et al. Spatial characteristics and removal of dissolved black carbon in the western Arctic Ocean and Bering Sea[J]. Geochimica et Cosmochimica Acta, 2021, 304: 178-190. doi: 10.1016/j.gca.2021.04.024
[80] FANG Y, CHEN Y J, HU L M, et al. Large-river dominated black carbon flux and budget: A case study of the estuarine-inner shelf of East China Sea, China[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2489-2496.
[81] ROEBUCK J A Jr, MEDEIROS P M, LETOURNEAU M L, et al. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha River, GA[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(9): 3055-3071. doi: 10.1029/2018JG004406
[82] JONES M W, de ARAGÃO L E O C, DITTMAR T, et al. Environmental controls on the riverine export of dissolved black carbon[J]. Global Biogeochemical Cycles, 2019, 33(7): 849-874. doi: 10.1029/2018GB006140
[83] GAO H, LI H X, SHI J Q, et al. Black carbon, soil organic matter molecular signatures under different land uses in Shenyang, China and relationship with PAHs[J]. Chemosphere, 2023, 342: 140089. doi: 10.1016/j.chemosphere.2023.140089
[84] LIU Y H, WANG X S, GUO Y H, et al. Association of black carbon with heavy metals and magnetic properties in soils adjacent to a cement plant, Xuzhou (China)[J]. Journal of Applied Geophysics, 2019, 170: 103802. doi: 10.1016/j.jappgeo.2019.06.018
[85] HE Y, ZHANG G L. Historical record of black carbon in urban soils and its environmental implications[J]. Environmental Pollution, 2009, 157(10): 2684-2688. doi: 10.1016/j.envpol.2009.05.019
[86] LIU S D, XIA X H, ZHAI Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 2011, 82(2): 223-228. doi: 10.1016/j.chemosphere.2010.10.017
[87] ZONG Y T, XIAO Q, LU S G. Black carbon (BC) of urban topsoil of steel industrial city (Anshan), Northeastern China: Concentration, source identification and environmental implication[J]. The Science of the Total Environment, 2016, 569/570: 990-996. doi: 10.1016/j.scitotenv.2016.06.097
[88] KOPECKÝ M, KOLÁŘ L, VÁCHALOVÁ R, et al. Black carbon and its effect on carbon sequestration in soil[J]. Agronomy, 2021, 11(11): 2261. doi: 10.3390/agronomy11112261
[89] RAWLINS B G, VANE C H, KIM A W, et al. Methods for estimating types of soil organic carbon and their application to surveys of UK urban areas[J]. Soil Use and Management, 2008, 24(1): 47-59. doi: 10.1111/j.1475-2743.2007.00132.x
[90] HAMILTON G A, HARTNETT H E. Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem[J]. Organic Geochemistry, 2013, 59: 87-94. doi: 10.1016/j.orggeochem.2013.04.003
[91] PAROISSIEN J B, ORTON T, SABY N, et al. Mapping black carbon content in topsoils of central France[J]. Soil Use and Management, 2012, 28(4): 488-496. doi: 10.1111/j.1475-2743.2012.00452.x
[92] GAUTAM S, YAN F P, KANG S C, et al. Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region[J]. Environmental Science and Pollution Research International, 2020, 27(3): 2670-2676. doi: 10.1007/s11356-019-07121-7
[93] KARTHIK V, BHASKAR B V, RAMACHANDRAN S, et al. Black carbon flux in terrestrial and aquatic environments of Kodaikanal in the Western Ghats, South India: Estimation, source identification, and implication[J]. The Science of the Total Environment, 2023, 854: 158647. doi: 10.1016/j.scitotenv.2022.158647
[94] ZHAN C L, CAO J J, HAN Y M, et al. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China[J]. European Journal of Soil Science, 2015, 66(3): 525-534. doi: 10.1111/ejss.12236
[95] FANG Y, CHEN Y J, LIN T, et al. Spatiotemporal trends of elemental carbon and char/soot ratios in five sediment cores from Eastern China marginal seas: Indicators of anthropogenic activities and transport patterns[J]. Environmental Science & Technology, 2018, 52(17): 9704-9712.
[96] NEUPANE B, KANG S C, CHEN P F, et al. Historical black carbon reconstruction from the lake sediments of the Himalayan-Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(10): 5641-5651.
[97] REN P, LIU Y G, SHI X F, et al. Sources and sink of black carbon in Arctic Ocean sediments[J]. The Science of the Total Environment, 2019, 689: 912-920. doi: 10.1016/j.scitotenv.2019.06.437
[98] LORENZ K, KANDELER E. Biochemical characterization of urban soil profiles from Stuttgart, Germany[J]. Soil Biology and Biochemistry, 2005, 37(7): 1373-1385. doi: 10.1016/j.soilbio.2004.12.009
[99] EDMONDSON J L, STOTT I, POTTER J, et al. Black carbon contribution to organic carbon stocks in urban soil[J]. Environmental Science & Technology, 2015, 49(14): 8339-8346.
[100] RUPAKHETI D, KANG S C, RUPAKHETI M, et al. Black carbon in surface soil and its sources in three central Asian countries[J]. Archives of Environmental Contamination and Toxicology, 2021, 80(3): 558-566. doi: 10.1007/s00244-021-00832-4
[101] CZIMCZIK C I, PRESTON C M, SCHMIDT M W I, et al. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)[J]. Global Biogeochemical Cycles, 2003, 17(1): 1020.
[102] LI Y, KANG S C, CHEN J Z, et al. Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil[J]. The Science of the Total Environment, 2019, 686: 1030-1038. doi: 10.1016/j.scitotenv.2019.05.469
[103] CLARK J S, PATTERSON W A. Background and local charcoal in sediments: Scales of fire evidence in the paleorecord[C]//Clark JS, Cachier H, Goldammer JG, et al. Sediment Records of Biomass Burning and Global Change. Berlin, Heidelberg: Springer, 1997: 23-48.
[104] SRIVASTAVA R, ASUTOSH A, SABU P, et al. Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning[J]. Environmental Pollution, 2021, 276: 116645. doi: 10.1016/j.envpol.2021.116645
[105] ZHAO S Y, TIE X X, CAO J J, et al. Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong Region, China[J]. Atmospheric Research, 2015, 164/165: 286-296. doi: 10.1016/j.atmosres.2015.05.016
[106] LIU J F, FAN S M, HOROWITZ L W, et al. Evaluation of factors controlling long-range transport of black carbon to the Arctic[J]. Journal of Geophysical Research, 2011, 116(D4): D04307.
[107] TEXTOR C, SCHULZ M, GUIBERT S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom[J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1777-1813. doi: 10.5194/acp-6-1777-2006
[108] WU M X, LIU X H, ZHANG L M, et al. Impacts of aerosol dry deposition on black carbon spatial distributions and radiative effects in the community atmosphere model CAM5[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(5): 1150-1171. doi: 10.1029/2017MS001219
[109] KELLY RACHEL L, BIAN X P, FEAKINS SARAH J, et al. Delivery of metals and dissolved black carbon to the southern California coastal ocean via aerosols and floodwaters following the 2017 Thomas fire[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(3): e2020JG006117. doi: 10.1029/2020JG006117
[110] CAPE J N, COYLE M, DUMITREAN P. The atmospheric lifetime of black carbon[J]. Atmospheric Environment, 2012, 59: 256-263. doi: 10.1016/j.atmosenv.2012.05.030
[111] ODHIAMBO M, ROUTH J. Does black carbon contribute to eutrophication in large lakes?[J]. Current Pollution Reports, 2016, 2(4): 236-238. doi: 10.1007/s40726-016-0042-4
[112] KHAN A L, JAFFÉ R, DING Y, et al. Dissolved black carbon in Antarctic Lakes: Chemical signatures of past and present sources[J]. Geophysical Research Letters, 2016, 43(11): 5750-5757. doi: 10.1002/2016GL068609
[113] JURADO E, DACHS J, DUARTE C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34): 7931-7939. doi: 10.1016/j.atmosenv.2008.07.029
[114] JONES M W, QUINE T A, de REZENDE C E, et al. Do regional aerosols contribute to the riverine export of dissolved black carbon?[J]. Journal of Geophysical Research:Biogeosciences, 2017, 122(11): 2925-2938. doi: 10.1002/2017JG004126
[115] MANNINO A, RODGER HARVEY H. Black carbon in estuarine and coastal ocean dissolved organic matter[J]. Limnology and Oceanography, 2004, 49(3): 735-740. doi: 10.4319/lo.2004.49.3.0735
[116] WAGNER S, BRANDES J, SPENCER R G M, et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source[J]. Nature Communications, 2019, 10(1): 5064. doi: 10.1038/s41467-019-13111-7
[117] LIU J K, HAN G L. Tracing riverine particulate black carbon sources in Xijiang River Basin: Insight from stable isotopic composition and Bayesian mixing model[J]. Water Research, 2021, 194: 116932. doi: 10.1016/j.watres.2021.116932
[118] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 273-298. doi: 10.1146/annurev-earth-060614-105038
[119] DAN S F, CUI D Y, YANG B, et al. Sources, burial flux and mass inventory of black carbon in surface sediments of the Daya Bay, a typical mariculture bay of China[J]. Marine Pollution Bulletin, 2022, 179: 113708. doi: 10.1016/j.marpolbul.2022.113708
[120] RODIONOV A, AMELUNG W, PEINEMANN N, et al. Black carbon in grassland ecosystems of the world[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3013.
[121] XU X M, HONG Y H, ZHOU Q Z, et al. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China[J]. Journal of Oceanology and Limnology, 2018, 36(1): 114-127. doi: 10.1007/s00343-017-6214-2
[122] STANISZEWSKA M, BURSKA D, SAPOTA G, et al. The relationship between the concentrations and distribution of organic pollutants and black carbon content in benthic sediments in the Gulf of Gdańsk, Baltic Sea[J]. Marine Pollution Bulletin, 2011, 62(7): 1464-1475. doi: 10.1016/j.marpolbul.2011.04.013
[123] STANISZEWSKA M, KONIECKO I, FALKOWSKA L, et al. The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic)[J]. Journal of Environmental Sciences, 2016, 41: 24-32. doi: 10.1016/j.jes.2015.04.009
[124] GROSSMAN A, GHOSH U. Measurement of activated carbon and other black carbons in sediments[J]. Chemosphere, 2009, 75(4): 469-475. doi: 10.1016/j.chemosphere.2008.12.054
[125] DOMEIGNOZ-HORTA L A, POLD G, LIU X J A, et al. Microbial diversity drives carbon use efficiency in a model soil[J]. Nature Communications, 2020, 11(1): 3684. doi: 10.1038/s41467-020-17502-z
[126] LIU H W, WANG J J, SUN X, et al. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China[J]. The Science of the Total Environment, 2023, 884: 163835. doi: 10.1016/j.scitotenv.2023.163835
[127] CRISPO M, CAMERON D D, MEREDITH W, et al. Opening the black box: Soil microcosm experiments reveal soot black carbon short-term oxidation and influence on soil organic carbon mineralisation[J]. The Science of the Total Environment, 2021, 801: 149659. doi: 10.1016/j.scitotenv.2021.149659
[128] LIAN F, WANG Z Y, XING B S. Nano-black carbon (biochar) released from pyrogenic carbonaceous matter as a super suspending agent in water/soil environments[J]. Biochar, 2021, 3(1): 1-3. doi: 10.1007/s42773-020-00075-x
[129] DITTMAR T, de REZENDE C E, MANECKI M, et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome[J]. Nature Geoscience, 2012, 5: 618-622. doi: 10.1038/ngeo1541
[130] LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
[131] LIU Y X, CHEN Y, WANG Y Y, et al. Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon[J]. Land Degradation & Development, 2018, 29(11): 3985-3994.
[132] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059-2077. doi: 10.1175/BAMS-D-14-00110.1
[133] LIU Y, WU L N, HUANG S, et al. Sources, size-resolved deposition in the human respiratory tract and health risks of submicron black carbon in urban atmosphere in Pearl River Delta, China[J]. The Science of the Total Environment, 2023, 891: 164391. doi: 10.1016/j.scitotenv.2023.164391
[134] CHEN X S, WANG Z F, YU F Q, et al. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model[J]. Atmospheric Environment, 2017, 163: 44-56. doi: 10.1016/j.atmosenv.2017.05.016
[135] FANG Y, CHEN Y J, HUANG G P, et al. Particulate and dissolved black carbon in coastal China Seas: Spatiotemporal variations, dynamics, and potential implications[J]. Environmental Science & Technology, 2021, 55(1): 788-796.
[136] RAHUL P R C, BHAWAR R L, AYANTIKA D C, et al. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley[J]. Scientific Reports, 2014, 4: 3670. doi: 10.1038/srep03670
[137] WINIGER P, ANDERSSON A, ECKHARDT S, et al. The sources of atmospheric black carbon at a European gateway to the Arctic[J]. Nature Communications, 2016, 7: 12776. doi: 10.1038/ncomms12776
[138] CHEN L, ZHANG F, YAN P, et al. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere[J]. Environmental Pollution, 2020, 263(Pt B): 114507.
[139] LI Z Y, ZHI G R, ZHANG Y Z, et al. The integrating sphere system plus in situ absorption monitoring: A new scheme to study absorption enhancement of black carbon in ambient aerosols[J]. The Science of the Total Environment, 2023, 892: 164355. doi: 10.1016/j.scitotenv.2023.164355
[140] JANSSEN N A H, HOEK G, SIMIC-LAWSON M, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5[J]. Environmental Health Perspectives, 2011, 119(12): 1691-1699. doi: 10.1289/ehp.1003369
[141] KRUGER B R, HAUSNER M B, CHELLMAN N, et al. Dissolved black carbon as a potential driver of surface water heating dynamics in wildfire-impacted regions: A case study from Pyramid Lake, NV, USA[J]. The Science of the Total Environment, 2023, 888: 164141. doi: 10.1016/j.scitotenv.2023.164141
[142] DOMÍNGUEZ-VARGAS J R, NAVARRO-RODRÍGUEZ J A, de HEREDIA J B, et al. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 302-308.
[143] LUO L, LOU L P, CUI X Y, et al. Sorption and desorption of pentachlorophenol to black carbon of three different origins[J]. Journal of Hazardous Materials, 2011, 185(2/3): 639-646.
[144] TRUBETSKAYA A, KLING J, ERSHAG O, et al. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black[J]. Journal of Hazardous Materials, 2019, 365: 846-856. doi: 10.1016/j.jhazmat.2018.09.061
[145] 程广焕, 孙明洋, 罗玲, 等. 黑碳对沉积物中疏水性有机污染物的锁定作用与微生物降解的影响研究进展[J]. 环境化学, 2014, 33(12): 2058-2067. doi: 10.7524/j.issn.0254-6108.2014.12.007 CHENG G H, SUN M Y, LUO L, et al. Locking and biodegradation effects of hydrophobic organic contaminants(HOCs) by black carbon associated with sediments[J]. Environmental Chemistry, 2014, 33(12): 2058-2067 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.007
[146] CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental Science & Technology, 2013, 47(18): 10349-10355.
[147] WANG D X, HUANG D Y, WU S, et al. Pyrogenic carbon initiated the generation of hydroxyl radicals from the oxidation of sulfide[J]. Environmental Science & Technology, 2021, 55(9): 6001-6011.
[148] XU W Q, PIGNATELLO J J, MITCH W A. Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides[J]. Environmental Science & Technology, 2015, 49(6): 3419-3426.
[149] XU K, LIU Y X, WANG X F, et al. Combined toxicity of functionalized nano-carbon black and cadmium on Eisenia fetida coelomocytes: The role of adsorption[J]. Journal of Hazardous Materials, 2020, 398: 122815. doi: 10.1016/j.jhazmat.2020.122815
[150] LIU Y, CHEN Z F, WANG J X, et al. Distribution characteristics of lipophilic marine phycotoxins in the sediment: A case study in Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2021, 162: 111908. doi: 10.1016/j.marpolbul.2020.111908
[151] LIU H T, GE Q, XU F C, et al. Dissolved black carbon induces fast photo-reduction of silver ions under simulated sunlight[J]. Science of the Total Environment, 2021, 775: 145897. doi: 10.1016/j.scitotenv.2021.145897
[152] PANDEY S D, ROCHA L C, PEREIRA G, et al. Properties of carbon particles in archeological and natural Amazon rainforest soils[J]. CATENA, 2020, 194: 104687. doi: 10.1016/j.catena.2020.104687