-
挺水植物(emergent macrophytes),作为水生植物的重要类型以及淡水水域重要的初级生产力之一,对淡水生态系统具有重要作用. 挺水植物地上组织(茎和叶)挺出水面,而地下组织(根或根茎)一般生长于水陆交界处浅水区域沉积物中[1 − 2]. 挺水植物主要从沉积物中获取生长所需营养物质[3 − 5],其庞大根系所在区域(根区)微生物数量和种类远高于非根区沉积物,形成明显的根际效应[6 − 8]. 因此,挺水植物根区是沉积物-根系-微生物三者紧密结合相互影响的关键场所,其影响可归纳为以下方面:一方面,挺水植物通过其根系向沉积物输送氧气,促进了好氧条件下营养元素的物质循环[9]. 如成水平等[10]发现植物根系泌氧将增强硝化过程提高沉积物硝态氮(NO3−-N)含量. 王文林等[9]则报道菖蒲成株根系的氧扩散能力显著高于幼苗阶段,这可能与植物叶面积以及根系生物量、根表面积的大小等有密切关系. 可见,挺水植物的氧气扩散能力受物种以及生长阶段的强烈影响;另一方面,挺水植物的根系能释放超过200种的分泌物,如糖、氨基酸、有机酸等,这些分泌物不仅影响根区沉积物的微生境,还为沉积物微生物提供了碳源和营养物质[11],使根际微生物的数量及代谢活性远高于非根际沉积物[12]. 因此,吴林坤等[13]等认为,根系分泌物对根际微生物具有选择塑造作用,其群落结构的独特性与代表性将受植物物种差异以及生长阶段的影响. 可见,物种及其生长阶段将是影响挺水植物根区微生物的关键因子.
菖蒲(Acorus calamus),天南星科菖蒲属,典型的多年生挺水植物,广泛分布于河流、沼泽以及湖泊岸边等浅水水域. 菖蒲根系发达,对氮、磷等营养盐有很强的吸收能力[2,9,14],加之其形态美观,常被用于人工湿地或园林景观中[7]. 近年来,关于菖蒲根区沉积物微生物已有一些研究报告. 如顾诗云等[2]研究了淹水胁迫对菖蒲生理特性及其根际细菌群落特征的影响. 寄博华[15]发现斗南湿地菖蒲植物群丛沉积物细菌群落的丰富度和多样性均最大,高于芦苇和美人蕉植物群从. 赵良元等[16]通过90 d的培养发现,菖蒲的生长可大大提高沉积物中微生物的活性及多样性. 但现有研究均仅为短期内针对菖蒲的培养实验所获得的结果,对不同生长阶段菖蒲根区沉积物微生物的变化特征的认识仍十分不足.
本研究通过为期 175 d的培养时间,基于16S-rRNA高通量测序技术并结合FAPOTAX功能预测,探究菖蒲根区沉积物细菌群落结构和功能特征在三个生长阶段(生长期、成熟期、衰亡期)的差异,以期进一步阐明挺水植物的生长对其根区细菌群落结构及其功能组成的影响.
挺水植物菖蒲根区沉积物细菌群落结构和功能特征分析
The structural and functional characteristics of the sedimentary bacterial community in the root area of Acorus calamus
-
摘要: 挺水植物根区是湖泊等淡水生态系统物质循环最为活跃的微生态区域之一. 为了进一步明确挺水植物在不同生长阶段对根区沉积物微生物的影响,本论文以挺水植物菖蒲(Acorus calamus)为研究对象,构建室外盆栽实验系统,采集实验第35、105和175 天时菖蒲根区及无植物对照系统沉积物样品,研究菖蒲生长发育对根区沉积物细菌群落及功能的影响. 结果表明,菖蒲根区沉积物共检测OTUs数量11659个,无植物的沉积物样品获得OTUs数量为10337个. 基于OTUs结果的分析发现,菖蒲根区沉积物Shannon、Sobs、ACE和Chao指数平均值表现为CA>CK;相比于对照组而言,菖蒲根区独有的OTUs数量略高,意味着菖蒲生长可能会丰富根区沉积物细菌的物种组成,尤其是对于细菌群落中相对丰度占比较小的物种产生显著影响;通过FAPROTAX对菖蒲根区及对照系统沉积物细菌代谢及生态功能进行注释,共得到67种细菌群落功能类型,以化能异养、需氧化能异养、发酵、固氮作用、光合自养、亚硝酸盐还原功能等类群为主,菖蒲的生长将提高氮循环功能类群的相对丰度从而对沉积物氮循环过程产生一定的影响,且这种影响将随菖蒲的不同生长阶段而有所变化. 沉积物理化参数是驱动菖蒲根区细菌群落的关键因子.Abstract: The root zone of emergent plants is one of the most active microecological regions for nutrients biogeochemical cycles in freshwater ecosystems. To further clarify the influence of different growth stages of emergent plants on the bacterial community and function in their root zone, Acorus calamus was chosen and used to construct the outdoor experiment system in this study. The sediments samples were collected from both Acorus calamus' root zone and the control system (non-plant sediment) on the 35, 105 and 175 days, respectively. A total of 11659 and 10337 OTUs were detected in Acorus calamus and control groups, respectively. The average values of Shannon, Sobs, ACE and Chao indexes were CA>CK. The number of unique OTUs in Acorus calamus root zone sediments was higher than in the non-plant control system. This suggests that plant growth may enrich the bacteria composition in their root zone, especially for the lower relative abundance species in the bacterial community. A total of 67 functional types of bacteria were predicted by FAPROTAX from the Acorus calamus root zone sediment and non-plant sediment. The main functional groups are chemoheterotrophic, aerobic heterotrophic, fermentation, nitrogen fixation, photosynthetic autotrophic, and nitrite reduction. The growth of Acorus calamus has the potential to increase the relative abundance of nitrogen cycling functional groups and have a certain impact on the nitrogen cycling process in sediment. This influence will vary with different growth stages of Acorus calamus. The bacterial community was influenced by the physicochemical parameters of the sediment in the root zone of Acorus calamus.
-
Key words:
- Acorus calamus /
- root zone /
- sediment /
- bacterial community /
- function
-
-
[1] 寻亚非, 李映雪, 王佳俊, 等. 拉鲁湿地植物和底泥氮磷生态化学计量学特征[J]. 环境化学, 2021, 40(7): 2105-2114. doi: 10.7524/j.issn.0254-6108.2020082901 XUN Y F, LI Y X, WANG J J, et al. Ecological stoichiometry characteristics of nitrogen and phosphorus in plants and sediments in Lhalu wetland[J]. Environmental Chemistry, 2021, 40(7): 2105-2114 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082901
[2] 顾诗云, 杨飞, 张毅敏, 等. 淹水胁迫对菖蒲生理特性及其根际细菌群落特征的影响[J]. 生态与农村环境学报, 2020, 36(4): 488-498. GU S Y, YANG F, ZHANG Y M, et al. Effects of flooding stress on physiological characteristics and rhizosphere bacterial community of Acorus calamus[J]. Journal of Ecology and Rural Environment, 2020, 36(4): 488-498 (in Chinese).
[3] CRUMP B C, AMARAL-ZETTLER L A, KLING G W. Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils[J]. The ISME Journal, 2012, 6(9): 1629-1639. doi: 10.1038/ismej.2012.9 [4] 余居华, 王乐豪, 康得军, 等. 湖滨带芦苇恢复过程中沉积物氮赋存形态及含量变化: 以巢湖为例[J]. 湖泊科学, 2021, 33(5): 1467-1477. doi: 10.18307/2021.0514 YU J H, WANG L H, KANG D J, et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China[J]. Journal of Lake Sciences, 2021, 33(5): 1467-1477 (in Chinese). doi: 10.18307/2021.0514
[5] 黄红林, 吕丽丽, 吕继涛, 等. 根际化学与生物多样性的表征方法: 组学技术的机遇与挑战[J]. 环境化学, 2024, 43(1): 210-223. doi: 10.7524/j.issn.0254-6108.2022083002 HUANG H L, LYU L L, LYU J T, et al. Characterization methods of rhizosphere chemo-and biodiversity: Opportunities and challenges of omics technology[J]. Environmental Chemistry, 2024, 43(1): 210-223 (in Chinese) doi: 10.7524/j.issn.0254-6108.2022083002
[6] 方娇慧. 湿地类型/挺水植物对淡水湿地沉积物微生物群落的影响机制[D]. 济南: 山东大学, 2020. FANG J H. The Influence Mechanisms of Wetland Types/Emergent Plants on the Microbial Communities in Freshwater Wetland Sediments[D]. Jinan: Shandong University, 2020 (in Chinese).
[7] 陈信含, 张建, 胡振, 等. 典型人工湿地系统中植物对苯并[a]芘的去除作用及机制[J]. 环境化学, 2023, 42(3): 1042-1048. doi: 10.7524/j.issn.0254-6108.2022101706 CHEN X H, ZHANG J, HU Z, et al. Removal of benzo[a]pyrene by plants in typical constructed wetland system and its mechanism[J]. Environmental Chemistry, 2023, 42(3): 1042-1048 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022101706
[8] LI X, LI Y Y, WU J S. Different in root exudates and rhizosphere microorganisms effect on nitrogen removal between three emergent aquatic plants in surface flow constructed wetlands[J]. Chemosphere, 2023, 337: 139422. doi: 10.1016/j.chemosphere.2023.139422 [9] 王文林, 王国祥, 万寅婧, 等. 光照和生长阶段对菖蒲根系泌氧的影响[J]. 生态学报, 2013, 33(12): 3688-3696. doi: 10.5846/stxb201209091269 WANG W L, WANG G X, WAN Y J, et al. The influence of light and growth stage on oxygen diffusion capacity of Acorus calamus roots[J]. Acta Ecologica Sinica, 2013, 33(12): 3688-3696 (in Chinese). doi: 10.5846/stxb201209091269
[10] 成水平, 吴振斌, 夏宜琤. 水生植物的气体交换与输导代谢[J]. 水生生物学报, 2003, 27(4): 413-417. doi: 10.3321/j.issn:1000-3207.2003.04.016 CHENG S P, WU Z B, XIA Y C. Review on gas exchange and transportation in macrophytes[J]. Acta Hydrobiologica Sinica, 2003, 27(4): 413-417 (in Chinese). doi: 10.3321/j.issn:1000-3207.2003.04.016
[11] 刘相粉, 王川, 何鹏, 等. 宁夏沙湖沉水植物恢复初期沉积物细菌群落特征研究[J]. 水生态学杂志, 2023, 44(1): 92-100. LIU X F, WANG C, HE P, et al. Sediment bacterial community structure during restoration of submerged macrophytes in Shahu Lake, Ningxia[J]. Journal of Hydroecology, 2023, 44(1): 92-100 (in Chinese).
[12] ZHANG F, SHEN J, LI L, et al. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China[J]. Plant and Soil, 2004, 260(1): 89-99. [13] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310. doi: 10.3724/SP.J.1258.2014.00027 WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310 (in Chinese). doi: 10.3724/SP.J.1258.2014.00027
[14] 郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002 GUO H F, ZHEN Z L, ZHAO L T, et al. Research on the removal effect of tidal flow–subsurface flow constructed wetland on nitrogen in urban polluted water[J]. Environmental Chemistry, 2021, 40(12): 3887-3897 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021053002
[15] 寄博华, 李玮, 常军军, 等. 滇池湖滨湿地不同挺水植物区沉积物细菌群落结构特征[J]. 生态与农村环境学报, 2020, 36(3): 390-398. JI B H, LI W, CHANG J J, et al. Characteristics of bacterial community structure in sediments with different emergent plants in Dianchi lakeside wetland[J]. Journal of Ecology and Rural Environment, 2020, 36(3): 390-398 (in Chinese).
[16] 赵良元, 陶晶祥, 刘敏. 水生植物对沉积物微生物群落功能多样性的影响[J]. 长江科学院院报, 2015, 32(6): 81-86. ZHAO L Y, TAO J X, LIU M. Effects of aquatic macrophyte planting on functional diversity of microbial community in sediment[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 81-86 (in Chinese).
[17] 马率. 武昌湖挺水植物-沉积物微生物与营养元素的互作机制研究[D]. 北京: 北京科技大学, 2023. MA L. The Research of Interaction Mechanisms between Plant-Sediment Microbial System and Nutrient Elements in the Wuchang Lake[D]. Beijing: University of Science and Technology Beijing, 2023 (in Chinese).
[18] 张金萍. 挺水植物根际沉积物氨氧化微生物生态分布特征及硝化作用研究[D]. 镇江: 江苏大学, 2015. ZHANG J P. Study on ecological distribution characteristics and nitrification of ammonia-oxidizing microorganisms in rhizosphere sediments of emergent plants[D]. Zhenjiang: Jiangsu University, 2015 (in Chinese).
[19] 陈登, 蔡启佳, 田翠翠. 3种沉水植物根际对沉积物中典型氮循环微生物功能基因丰度的影响[J]. 云南农业大学学报(自然科学), 2018, 33(2): 314-323. CHEN D, CAI Q J, TIAN C C. Effects of the rhizospheres of three submerged plants on the abundances of functional genes of typical nitrogen cycle microorganisms in sediments[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(2): 314-323 (in Chinese).
[20] 马玉, 肖昕. 菖蒲湿地处理含油废水中微生物与净化效果[J]. 工业水处理, 2019, 39(8): 81-85. doi: 10.11894/iwt.2018-0647 MA Y, XIAO X. Microorganisms and purification efficiency in oily wastewater treatment by calamus wetland[J]. Industrial Water Treatment, 2019, 39(8): 81-85 (in Chinese). doi: 10.11894/iwt.2018-0647
[21] SHI S J, NUCCIO E, HERMAN D J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons[J]. mBio, 2015, 6(4): e00746. [22] 余俊琪, 徐一峰, 郭瑶, 等. 沉积物镉污染下苦草与根际微生物群落响应特征[J]. 水生生物学报, 2023, 47(11): 1787-1797. doi: 10.7541/2023.2023.0034 YU J Q, XU Y F, GUO Y, et al. Response characteristics of Vallisneria natans and rhizosphere microbial community under sediment-cadmium pollution[J]. Acta Hydrobiologica Sinica, 2023, 47(11): 1787-1797 (in Chinese). doi: 10.7541/2023.2023.0034
[23] 曹洋, 孙鹤铭, 刘利, 等. 冬季衡水湖沉积物微生物群落结构特征及影响因素[J]. 环境工程技术学报, 2023, 13(1): 154-163. doi: 10.12153/j.issn.1674-991X.20210652 CAO Y, SUN H M, LIU L, et al. Microbial community structure characteristics and influencing factors in sediments of Hengshui Lake in winter[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 154-163 (in Chinese). doi: 10.12153/j.issn.1674-991X.20210652
[24] 秦玉春, 邹涛, 张璇, 等. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应[J]. 环境工程技术学报, 2023, 13(3): 1079-1087. doi: 10.12153/j.issn.1674-991X.20220380 QIN Y C, ZOU T, ZHANG X, et al. Differential responses of five wetland plants and their root microbial communities under ofloxacin pollution stress[J]. Journal of Environmental Engineering Technology, 2023, 13(3): 1079-1087 (in Chinese). doi: 10.12153/j.issn.1674-991X.20220380
[25] FRENZEL P, ROTHFUSS F, CONRAD R. Oxygen profiles and methane turnover in a flooded rice microcosm[J]. Biology and Fertility of Soils, 1992, 14(2): 84-89. doi: 10.1007/BF00336255 [26] SHELEF O, GROSS A, RACHMILEVITCH S. Role of plants in a constructed wetland: Current and new perspectives[J]. Water, 2013, 5(2): 405-419. doi: 10.3390/w5020405 [27] 宋超, 裘丽萍, 孟顺龙, 等. 人工模拟不同种植密度下四种水生植物的生长状况及对氮、磷的去除[J]. 农业环境科学学报, 2014, 33(1): 178-184. doi: 10.11654/jaes.2014.01.023 SONG C, QIU L P, MENG S L, et al. Growth of four aquatic plants and their removal of total nitrogen and total phosphorus in eutrophication water under different plant density: A laboratory experiment[J]. Journal of Agro-Environment Science, 2014, 33(1): 178-184 (in Chinese). doi: 10.11654/jaes.2014.01.023
[28] 张丁予. 菹草对沉积物微生物群落结构及磷迁移转化的影响研究[D]. 南京: 南京师范大学, 2016. ZHANG D Y. Effects of Potamogeton crispus on microbial community structure and phosphorus migration and transformation in sediments[D]. Nanjing: Nanjing Normal University, 2016 (in Chinese).
[29] AJILOGBA C F, OLANREWAJU O S, BABALOLA O O. Plant growth stage drives the temporal and spatial dynamics of the bacterial microbiome in the rhizosphere of Vigna subterranea[J]. Frontiers in Microbiology, 2022, 13: 825377. doi: 10.3389/fmicb.2022.825377 [30] FAZAL A, YANG M K, WEN Z L, et al. Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types[J]. Scientific Reports, 2021, 11(1): 10788. doi: 10.1038/s41598-021-90251-1 [31] YANG W, JEELANI N, ZHU Z H, et al. Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands[J]. Applied Soil Ecology, 2019, 135: 38-43. doi: 10.1016/j.apsoil.2018.11.009 [32] 程铁涵, 周昕彦, 曹玉成, 等. 氮形态对沉水植物氮磷去除效果及沉积微生物群落结构的影响[J]. 山东农业大学学报(自然科学版), 2022, 53(4): 560-567. CHENG T H, ZHOU X Y, CAO Y C, et al. Effects of nitrogen forms on nitrogen and phosphorus removal efficiency of submerged plants and microbial community structure in sediments[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2022, 53(4): 560-567 (in Chinese).
[33] 刘忠航. 双齿围沙蚕对养殖池塘沉积物氮磷赋存形态和微生物群落的影响[D]. 上海: 上海海洋大学, 2022. LIU Z H. Effects of Perinereis Aibuhitensis on the Occurrence Form of Nitrogen and Phosphorus and Microbial Community Composition in Pond Sediments[D]. Shanghai: Shanghai Ocean University, 2022 (in Chinese).
[34] HEMPEL M, BOTTÉ S E, NEGRIN V L, et al. The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca Estuary salt marshes[J]. Journal of Soils and Sediments, 2008, 8(5): 289-297. doi: 10.1007/s11368-008-0027-z [35] CORDOVEZ V, ROTONI C, DINI-ANDREOTE F, et al. Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome[J]. Science of the Total Environment, 2021, 772: 144825. doi: 10.1016/j.scitotenv.2020.144825 [36] 杨文焕, 甄玉, 姚植, 等. 高原盐化湖泊沉积物氮代谢特征解析[J]. 中国环境科学, 2023, 43(3): 1328-1339. doi: 10.3969/j.issn.1000-6923.2023.03.034 YANG W H, ZHEN Y, YAO Z, et al. Characterization for nitrogen metabolism of sediments in highland saline lake[J]. China Environmental Science, 2023, 43(3): 1328-1339 (in Chinese). doi: 10.3969/j.issn.1000-6923.2023.03.034
[37] LEE S H, KA J O, CHO J C. Members of the Phylum Acidobacteria are dominant and metabolically active in rhizosphere soil[J]. FEMS Microbiology Letters, 2008, 285(2): 263-269. doi: 10.1111/j.1574-6968.2008.01232.x