-
在水处理领域,基于硫酸根自由基(SO4·−)的高级氧化技术是近年来的一个研究热点. 与芬顿技术相比,SO4·−的氧化还原电位为2.5—3.1 V,高于羟基自由基(·OH,2.7 V),半衰期远比·OH长,pH的适应范围宽[1]. 固态过硫酸盐(PS)比液态过氧化氢(H2O2)要利于运输和存储,因此在处理水中污染物时具有更高的能效和实际操作优势. 过硫酸盐自身的氧化能力较弱,通常需要将其活化产生氧化性更强的活性物质(如SO4·−等自由基)来发挥氧化作用.
在活化过硫酸盐的方法中,碳基材料因其较大的比表面积、sp2和sp3杂化的碳骨架结构、良好的导电性能以及非金属特性而被广泛用于研究[2,3]. 目前,石墨烯、碳纳米管、活性炭、介孔炭和生物炭是备受关注的几种材料. 与其他碳材料相比,生物炭具有制备和原料来源上的"减碳"和成本优势,是一种环保的吸附剂和催化剂. 然而,与石墨化的碳纳米管和石墨烯相比,直接焙烧得到的生物炭主要由非晶碳组成,其催化活化过硫酸盐的能力有限,通常需要适当改性以提高其催化性能. Hou等将生物炭与适量氧化石墨烯复合,成功将材料活化过硫酸盐降解苯酚的去除率从原始生物炭的20%提高到100%[2]. 另一类活化过硫酸盐的优秀催化剂是过渡金属(如锰、铁、钴)及其氧化物[4]. 然而,这些金属及其氧化物容易团聚,活性位点难以充分利用. 将它们负载到生物炭上不仅可以提高活性金属及其氧化物的分散性和稳定性,还可以发挥生物炭自身的吸附能力,增强材料活化过硫酸盐的能力[5].
孔道结构和比表面积是影响碳材料活化过硫酸盐的另一个重要因素. 由于受到生物质原料的限制,生物炭的孔容和比表面积通常较低. 为了增加生物炭的孔道结构,可以采用CO2、氧气和水蒸气等氧化碳壁产生孔道,也可以通过化学活化剂(如氯化锌、磷酸、强碱等)活化新增孔容[6]. 近年来,高锰酸钾开始用于活化碳材料[7]. Hu等[8]利用高锰酸钾溶液对生物炭进行浸渍,显著提高了生物炭的比表面积. 此外,作为高锰酸钾的分解产物,锰氧化物活化过硫酸盐的性能优异,在自然界中的丰度高,对环境友好且生物毒性较低. 因此,利用高锰酸钾改性生物炭有望提高生物炭在高级氧化技术中的潜力.
垂序商陆是一种入侵植物,对本地物种和生态系统危害较大[9]. 此外,垂序商陆生物量大,生长快,适应性强,分布广[10]. 将垂序商陆转化成生物炭用于处理水环境中的污染物,对减污降碳意义较大. 本研究选择垂序商陆作为生物炭的原料,经高锰酸钾溶液处理,不同温度下焙烧制得锰改性生物炭,以水中常见污染物苯酚作为目标污染物,探讨该碳材料活化PDS降解苯酚的性能.
锰改性生物炭活化过二硫酸盐降解水中苯酚
Study on catalytic peroxydisulfate activation on manganese modified biochars for phenol degradation
-
摘要: 废弃生物质的再利用对减污降碳有较大意义. 本文采用垂序商陆的茎为原料,经高锰酸钾溶液浸泡后,氮气保护下分别于700、850℃焙烧得到锰改性生物炭(Mn-700BC、Mn-850BC),并以同温度下未改性的生物炭(700BC、850BC)作为参照,探讨改性材料活化过二硫酸盐(PDS)降解苯酚的性能. SEM-EDS、XRD和XPS的结果表明,锰氧化物成功负载于生物炭上,锰的价态为Mn(Ⅱ)、Mn(Ⅲ)和Mn(Ⅳ)的混合价;850 ℃焙烧所得生物炭的石墨化程度、孔容及比表面积比700 ℃的生物炭高,官能团含量低. Mn-700BC和Mn-850BC对苯酚的去除率可达到89%和91%,且负载的锰氧化物对苯酚的降解起主要活化作用,碳的石墨化结构对活化有一定作用;EPR和自由基捕获实验结果显示,锰改性生物炭活化PDS降解苯酚以自由基氧化路径为主,同时伴有非自由基氧化途径. 苯酚和PDS初始浓度对催化反应初活性的影响可以用Langmuir-Hinshelwood模型描述,降解反应速率受苯酚及PDS的吸附控制. 在初始pH 3—9范围内,提高pH有利于苯酚的降解;共存的Cl−、NO3−、SO42-对苯酚降解均有一定抑制作用. 锰改性生物炭活化PDS降解苯酚效果优良,揭示了这种改性材料用于活化过硫酸盐处理水中有机物的潜在前景.Abstract: The reuse of biomass waste is helpful for pollution and carbon dioxide emissions. In this study, the stem of phytolacca americana L was chosen as the biomass, which was then soaked in potassium permanganate solution and calcined under N2 atmosphere at 700 oC or 850 oC. The obtained Mn-modified biochars (Mn-700BC and Mn-850BC) and the unmodified biochars (700BC and 850BC) as their references were used to evaluate their catalytic peroxydisulfate (PDS) activation performances for phenol degradation. The SEM-EDS, XRD and XPS results unveil that manganese oxides, mainly Mn(Ⅱ), Mn(Ⅲ) and Mn(Ⅳ), were loaded on the biochars successfully. The biochars prepared at 850 oC possess higher graphitization extent, bigger pore volume and larger specific surface area compared with those at 700 oC. However, the former materials have functional groups than the latter. Mn-700BC and Mn-850BC exhibited high phenol removal efficiencies of 89% and 91%, respectively. The loaded manganese oxides played a major role in the activation of phenol degradation, while the graphitic structure of carbon also played a certain role. Based on the results of radical tapping experiments and EPR spectra, the radical reaction pathway is the main mechanism, while the nonradical process is included for phenol degradation, too. The relationships between the initial concentration of phenol or PDS and the catalytic activity can be well described by Langmuir-Hinshelwood model, indicating that the adsorption of phenol or PDS is the rate-controlling step during PDS activation by Mn-modified biochars for phenol degradation. Increasing pH can enhance phenol degradation with pH ranging from 3 to 9. The coexistence of Cl−, NO3− and SO42- is harmful to phenol degradation. Its excellent catalytic performance of PDS activation for phenol degradation reveals that these Mn-modified biochars have a good potential prospect in activating PDS for aqueous organic pollutants removal.
-
Key words:
- manganese modification /
- biochar /
- persulfate /
- activation
-
表 1 材料的孔结构参数
Table 1. Pore structural parameters of the tested materials
比表面积a/(m2·g−1)
Specific surface area总孔容b/(cm3·g−1)
Total pore volume微孔孔容c/(cm3·g−1)
Mesopore volume中孔孔容d/(cm3·g−1)
Mesopore volume700BC 423 0.22 0.18 0.04 Mn-700BC 412 0.25 0.13 0.12 850BC 512 0.29 0.21 0.08 Mn-850BC 570 0.33 0.22 0.11 a:Brunauer-Emmet-Teller(BET)方法计算 b:取相对压力为0.97处 c:t-plot方法 d:总孔容-微孔 表 2 材料活化PDS降解苯酚的一级动力学拟合结果
Table 2. Fitting results of phenol degradation using the first order kinetic model
材料
Materials苯酚浓度/(mmol·L−1)
Phenol concentration表观速率常数k1 /(min−1)
Apparent rate constant相关系数R2
Correlation coefficientMn-700BC 0.16 0.0271 0.94 0.37 0.0070 0.98 0.53 0.0029 0.99 Mn-850BC 0.16 0.0188 0.97 0.37 0.0108 0.98 0.53 0.0089 0.97 -
[1] XU Y, LIN H, LI Y K, et al. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis[J]. The Science of the Total Environment, 2017, 609: 644-654. doi: 10.1016/j.scitotenv.2017.07.151 [2] HOU X Z, DONG H R, LI Y J, et al. Activation of persulfate by graphene/biochar composites for phenol degradation: Performance and nonradical dominated reaction mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109348. doi: 10.1016/j.jece.2023.109348 [3] 李珏秀, 施启旭, 赵锐, 等 锰基催化剂用于活化过硫酸盐降解有机废水的研究进展[J]. 环境化学, 2023, 42(11): 3861-3877 LI J X, SHI Q X, ZHAO R, et al. Research progress on manganese based catalysts for activating persulfate degradation of organic wastewater[J]. Environmental Chemistry, 2023, 42(11): 3861-3877(in Chinese)
[4] HOU J F, HE X D, ZHANG S Q, et al. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review[J]. The Science of the Total Environment, 2021, 770: 145311. doi: 10.1016/j.scitotenv.2021.145311 [5] 孙彬, 徐佳敏, 高仕谦, 等. 碳包覆中空磁性微球活化过硫酸盐降解水中甲氧苄啶[J/OL]. 环境化学, doi: 10.7524/j.issn.0254-6108.2023022604 SUN B, XU J M, GAO S Q, et al. Degradation of trimethoprim in water by persulfate activated based on carbon-coated hollow magnetic microspheres[J/OL]. Environmental Chemistry, doi: 10.7524/j.issn.0254-6108.2023022604
[6] 朱厚堃, 张琼元, 郑玉华, 等. 化学活化剂对活性炭制备影响的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(2): 25-34. ZHU H K, ZHANG Q Y, ZHENG Y H, et al. Research progress on influence of chemical activators on preparation of activated carbon[J]. Natural Gas Chemical Industry, 2022, 47(2): 25-34 (in Chinese).
[7] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. doi: 10.1016/j.biortech.2015.08.132 [8] HU S C, CHEN Y C, LIN X Z, et al. Characterization and adsorption capacity of potassium permanganate used to modify activated carbon filter media for indoor formaldehyde removal[J]. Environmental Science and Pollution Research International, 2018, 25(28): 28525-28545. doi: 10.1007/s11356-018-2681-z [9] 付俊鹏, 李传荣, 许景伟, 等. 沙质海岸防护林入侵植物垂序商陆的防治[J]. 应用生态学报, 2012, 23(4): 991-997. FU J P, LI C R, XU J W, et al. Prevention and control of invaded plant Phytolacca americana in sandy coastal shelter forests[J]. Chinese Journal of Applied Ecology, 2012, 23(4): 991-997 (in Chinese).
[10] 薛生国, 刘丰豪, 吴川, 等. 超富集植物垂序商陆的锰吸收动态研究[J]. 中南大学学报(自然科学版), 2012, 43(2): 424-428. XUE S G, LIU F H, WU C, et al. Kinetics of manganese uptake and accumulation in hyperaccumulator plant Phytolacca americana Linn[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 424-428 (in Chinese).
[11] ZHU S M, XIAO P Y, WANG X, et al. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides[J]. Journal of Hazardous Materials, 2022, 427: 127938. doi: 10.1016/j.jhazmat.2021.127938 [12] LIANG J, LI X M, YU Z G, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058. [13] YIN Y Y, GUO X T, PENG D. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions[J]. Chemosphere, 2018, 205: 156-165. doi: 10.1016/j.chemosphere.2018.04.108 [14] LIAO M, WANG J W, YE L, et al. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode[J]. Angewandte Chemie (International Ed. in English), 2020, 59(6): 2273-2278. doi: 10.1002/anie.201912203 [15] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242: 36-42. doi: 10.1016/j.cej.2013.12.061 [16] 袁怡, 余恒超, 张亚新, 等. 生物炭对城乡多元有机固废蚯蚓堆肥产物应用于Cu(Ⅱ)吸附的研究[J]. 环境科学学报, 2023, 43(9): 211-220. YUAN Y, YU H C, ZHANG Y X, et al. Application of biochar to the adsorption of Cu(Ⅱ)from vermicomposting products of urban and rural multiple organic solid waste[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 211-220 (in Chinese).
[17] OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235 [18] 燕翔, 杨建东, 韩丽, 等. 壳聚糖/磁性核桃壳生物炭的制备及其对高浓度Pb(Ⅱ)的吸附[J]. 中国有色冶金, 2023, 52(5): 135-145. YAN X, YANG J D, HAN L, et al. Preparation of chitosan supported magnetic walnut shell biochar and its adsorption properties on high concentration of Pb(Ⅱ)[J]. China Nonferrous Metallurgy, 2023, 52(5): 135-145 (in Chinese).
[19] AZARGOHAR R, NANDA S, KOZINSKI J, et al. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel, 2014, 125: 90-100. doi: 10.1016/j.fuel.2014.01.083 [20] DU N J, LIU Y, LI Q J, et al. Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants[J]. Chemical Engineering Journal, 2021, 413: 127545. doi: 10.1016/j.cej.2020.127545 [21] WANG Y S, SONG Y J, LI N, et al. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 421: 126794. doi: 10.1016/j.jhazmat.2021.126794 [22] KIM D G, KO S O. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical[J]. Chemical Engineering Journal, 2020, 399: 125377. doi: 10.1016/j.cej.2020.125377 [23] LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336. [24] ZHU S S, HO S H, JIN C, et al. Nanostructured manganese oxides: Natural/artificial formation and their induced catalysis for wastewater remediation[J]. Environmental Science:Nano, 2020, 7(2): 368-396. doi: 10.1039/C9EN01250H [25] SUN R Y, LIU J T, WU Y S, et al. Enhanced non-radical degradation of organic pollutants by peroxymonosulfate activation with Zr-Mn composite oxide[J]. Chemical Engineering Journal, 2023, 471: 144529. doi: 10.1016/j.cej.2023.144529 [26] SHAO F L, WANG Y J, MAO Y R, et al. Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate[J]. Chemosphere, 2020, 261: 127844. doi: 10.1016/j.chemosphere.2020.127844 [27] HOU J F, LI H, TANG Y Q, et al. Supported N-doped carbon quantum dots as the highly effective peroxydisulfate catalysts for bisphenol F degradation[J]. Applied Catalysis B:Environmental, 2018, 238: 225-235. doi: 10.1016/j.apcatb.2018.07.032 [28] 张寅, 邵芸, 陈欢, 等. Pd/TiO2对水体中2, 4-二氯酚的催化加氢脱氯研究[J]. 环境科学, 2012, 33(1): 88-93. ZHANG Y, SHAO Y, CHEN H, et al. Catalytic hydrodechlorination of 2, 4-dichlorophenol over Pd/TiO2[J]. Environmental Science, 2012, 33(1): 88-93 (in Chinese).
[29] 姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. YAO H J, CHEN X, ZHANG Y, et al. Performance and mechanism of biochar doped γ-MnO2 nanocomposite activated peroxymonsulfate on 4-Chlorophenol degradation[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1833-1844 (in Chinese).
[30] WANG Y, JI Q J, XU J X, et al. Activation of peroxydisulfate using N-doped carbon-encapsulated Ni species for efficient degradation of tetracycline[J]. Separation and Purification Technology, 2021, 276: 119369. doi: 10.1016/j.seppur.2021.119369 [31] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314. [32] CHEN J B, ZHOU X F, ZHU Y M, et al. Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition[J]. Water Research, 2020, 186: 116371. doi: 10.1016/j.watres.2020.116371 [33] 徐梓淞, 宋雄伟, 黄闻宇, 等. 不同活化过硫酸盐体系的机理分析及不同无机阴离子的作用: 以两种有机染料为例[J]. 环境化学, 2022, 41(4): 1412-1424. doi: 10.7524/j.issn.0254-6108.2020122103 XU Z S, SONG X W, HUANG W Y, et al. Mechanism analysis of different activated persulfate systems and effects of different inorganic anions: A case study of two organic dyes[J]. Environmental Chemistry, 2022, 41(4): 1412-1424 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122103
[34] HUANG K Z, ZHANG H C. Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation[J]. The Science of the Total Environment, 2020, 743: 140828. doi: 10.1016/j.scitotenv.2020.140828 [35] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149. FENG Y, LI Y, YING G G. Micro-interface electron transfer oxidation based on persulfate activation[J]. Progress in Chemistry, 2021, 33(11): 2138-2149 (in Chinese).
[36] GAO Y, ZHOU Y, PANG S Y, et al. Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates[J]. Water Research, 2021, 193: 116856. doi: 10.1016/j.watres.2021.116856 [37] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 2020, 54(2): 1267-1275. [38] LIU J L, AN F X, ZHU C Y, et al. Efficient transformation of DDT with peroxymonosulfate activation by different crystallographic MnO2[J]. The Science of the Total Environment, 2021, 759: 142864. doi: 10.1016/j.scitotenv.2020.142864 [39] CHEN H Z, TIAN K, QING T P, et al. Efficient removal of tetrabromobisphenol A through persulfate activation by α-MnO2 nanofiber coated with graphene oxide[J]. Applied Surface Science, 2023, 641: 158445. doi: 10.1016/j.apsusc.2023.158445