[1] XU Y, LIN H, LI Y K, et al. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis[J]. The Science of the Total Environment, 2017, 609: 644-654. doi: 10.1016/j.scitotenv.2017.07.151
[2] HOU X Z, DONG H R, LI Y J, et al. Activation of persulfate by graphene/biochar composites for phenol degradation: Performance and nonradical dominated reaction mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109348. doi: 10.1016/j.jece.2023.109348
[3] 李珏秀, 施启旭, 赵锐, 等 锰基催化剂用于活化过硫酸盐降解有机废水的研究进展[J]. 环境化学, 2023, 42(11): 3861-3877 LI J X, SHI Q X, ZHAO R, et al. Research progress on manganese based catalysts for activating persulfate degradation of organic wastewater[J]. Environmental Chemistry, 2023, 42(11): 3861-3877(in Chinese)
[4] HOU J F, HE X D, ZHANG S Q, et al. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review[J]. The Science of the Total Environment, 2021, 770: 145311. doi: 10.1016/j.scitotenv.2021.145311
[5] 孙彬, 徐佳敏, 高仕谦, 等. 碳包覆中空磁性微球活化过硫酸盐降解水中甲氧苄啶[J/OL]. 环境化学, doi: 10.7524/j.issn.0254-6108.2023022604 SUN B, XU J M, GAO S Q, et al. Degradation of trimethoprim in water by persulfate activated based on carbon-coated hollow magnetic microspheres[J/OL]. Environmental Chemistry, doi: 10.7524/j.issn.0254-6108.2023022604
[6] 朱厚堃, 张琼元, 郑玉华, 等. 化学活化剂对活性炭制备影响的研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(2): 25-34. ZHU H K, ZHANG Q Y, ZHENG Y H, et al. Research progress on influence of chemical activators on preparation of activated carbon[J]. Natural Gas Chemical Industry, 2022, 47(2): 25-34 (in Chinese).
[7] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. doi: 10.1016/j.biortech.2015.08.132
[8] HU S C, CHEN Y C, LIN X Z, et al. Characterization and adsorption capacity of potassium permanganate used to modify activated carbon filter media for indoor formaldehyde removal[J]. Environmental Science and Pollution Research International, 2018, 25(28): 28525-28545. doi: 10.1007/s11356-018-2681-z
[9] 付俊鹏, 李传荣, 许景伟, 等. 沙质海岸防护林入侵植物垂序商陆的防治[J]. 应用生态学报, 2012, 23(4): 991-997. FU J P, LI C R, XU J W, et al. Prevention and control of invaded plant Phytolacca americana in sandy coastal shelter forests[J]. Chinese Journal of Applied Ecology, 2012, 23(4): 991-997 (in Chinese).
[10] 薛生国, 刘丰豪, 吴川, 等. 超富集植物垂序商陆的锰吸收动态研究[J]. 中南大学学报(自然科学版), 2012, 43(2): 424-428. XUE S G, LIU F H, WU C, et al. Kinetics of manganese uptake and accumulation in hyperaccumulator plant Phytolacca americana Linn[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 424-428 (in Chinese).
[11] ZHU S M, XIAO P Y, WANG X, et al. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides[J]. Journal of Hazardous Materials, 2022, 427: 127938. doi: 10.1016/j.jhazmat.2021.127938
[12] LIANG J, LI X M, YU Z G, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058.
[13] YIN Y Y, GUO X T, PENG D. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions[J]. Chemosphere, 2018, 205: 156-165. doi: 10.1016/j.chemosphere.2018.04.108
[14] LIAO M, WANG J W, YE L, et al. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode[J]. Angewandte Chemie (International Ed. in English), 2020, 59(6): 2273-2278. doi: 10.1002/anie.201912203
[15] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242: 36-42. doi: 10.1016/j.cej.2013.12.061
[16] 袁怡, 余恒超, 张亚新, 等. 生物炭对城乡多元有机固废蚯蚓堆肥产物应用于Cu(Ⅱ)吸附的研究[J]. 环境科学学报, 2023, 43(9): 211-220. YUAN Y, YU H C, ZHANG Y X, et al. Application of biochar to the adsorption of Cu(Ⅱ)from vermicomposting products of urban and rural multiple organic solid waste[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 211-220 (in Chinese).
[17] OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235
[18] 燕翔, 杨建东, 韩丽, 等. 壳聚糖/磁性核桃壳生物炭的制备及其对高浓度Pb(Ⅱ)的吸附[J]. 中国有色冶金, 2023, 52(5): 135-145. YAN X, YANG J D, HAN L, et al. Preparation of chitosan supported magnetic walnut shell biochar and its adsorption properties on high concentration of Pb(Ⅱ)[J]. China Nonferrous Metallurgy, 2023, 52(5): 135-145 (in Chinese).
[19] AZARGOHAR R, NANDA S, KOZINSKI J, et al. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel, 2014, 125: 90-100. doi: 10.1016/j.fuel.2014.01.083
[20] DU N J, LIU Y, LI Q J, et al. Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants[J]. Chemical Engineering Journal, 2021, 413: 127545. doi: 10.1016/j.cej.2020.127545
[21] WANG Y S, SONG Y J, LI N, et al. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 421: 126794. doi: 10.1016/j.jhazmat.2021.126794
[22] KIM D G, KO S O. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical[J]. Chemical Engineering Journal, 2020, 399: 125377. doi: 10.1016/j.cej.2020.125377
[23] LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336.
[24] ZHU S S, HO S H, JIN C, et al. Nanostructured manganese oxides: Natural/artificial formation and their induced catalysis for wastewater remediation[J]. Environmental Science:Nano, 2020, 7(2): 368-396. doi: 10.1039/C9EN01250H
[25] SUN R Y, LIU J T, WU Y S, et al. Enhanced non-radical degradation of organic pollutants by peroxymonosulfate activation with Zr-Mn composite oxide[J]. Chemical Engineering Journal, 2023, 471: 144529. doi: 10.1016/j.cej.2023.144529
[26] SHAO F L, WANG Y J, MAO Y R, et al. Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate[J]. Chemosphere, 2020, 261: 127844. doi: 10.1016/j.chemosphere.2020.127844
[27] HOU J F, LI H, TANG Y Q, et al. Supported N-doped carbon quantum dots as the highly effective peroxydisulfate catalysts for bisphenol F degradation[J]. Applied Catalysis B:Environmental, 2018, 238: 225-235. doi: 10.1016/j.apcatb.2018.07.032
[28] 张寅, 邵芸, 陈欢, 等. Pd/TiO2对水体中2, 4-二氯酚的催化加氢脱氯研究[J]. 环境科学, 2012, 33(1): 88-93. ZHANG Y, SHAO Y, CHEN H, et al. Catalytic hydrodechlorination of 2, 4-dichlorophenol over Pd/TiO2[J]. Environmental Science, 2012, 33(1): 88-93 (in Chinese).
[29] 姚宏嘉, 陈星, 张玉, 等. 生物炭负载γ-MnO2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理[J]. 环境工程学报, 2022, 16(6): 1833-1844. YAO H J, CHEN X, ZHANG Y, et al. Performance and mechanism of biochar doped γ-MnO2 nanocomposite activated peroxymonsulfate on 4-Chlorophenol degradation[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1833-1844 (in Chinese).
[30] WANG Y, JI Q J, XU J X, et al. Activation of peroxydisulfate using N-doped carbon-encapsulated Ni species for efficient degradation of tetracycline[J]. Separation and Purification Technology, 2021, 276: 119369. doi: 10.1016/j.seppur.2021.119369
[31] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314.
[32] CHEN J B, ZHOU X F, ZHU Y M, et al. Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition[J]. Water Research, 2020, 186: 116371. doi: 10.1016/j.watres.2020.116371
[33] 徐梓淞, 宋雄伟, 黄闻宇, 等. 不同活化过硫酸盐体系的机理分析及不同无机阴离子的作用: 以两种有机染料为例[J]. 环境化学, 2022, 41(4): 1412-1424. doi: 10.7524/j.issn.0254-6108.2020122103 XU Z S, SONG X W, HUANG W Y, et al. Mechanism analysis of different activated persulfate systems and effects of different inorganic anions: A case study of two organic dyes[J]. Environmental Chemistry, 2022, 41(4): 1412-1424 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122103
[34] HUANG K Z, ZHANG H C. Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation[J]. The Science of the Total Environment, 2020, 743: 140828. doi: 10.1016/j.scitotenv.2020.140828
[35] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149. FENG Y, LI Y, YING G G. Micro-interface electron transfer oxidation based on persulfate activation[J]. Progress in Chemistry, 2021, 33(11): 2138-2149 (in Chinese).
[36] GAO Y, ZHOU Y, PANG S Y, et al. Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates[J]. Water Research, 2021, 193: 116856. doi: 10.1016/j.watres.2021.116856
[37] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 2020, 54(2): 1267-1275.
[38] LIU J L, AN F X, ZHU C Y, et al. Efficient transformation of DDT with peroxymonosulfate activation by different crystallographic MnO2[J]. The Science of the Total Environment, 2021, 759: 142864. doi: 10.1016/j.scitotenv.2020.142864
[39] CHEN H Z, TIAN K, QING T P, et al. Efficient removal of tetrabromobisphenol A through persulfate activation by α-MnO2 nanofiber coated with graphene oxide[J]. Applied Surface Science, 2023, 641: 158445. doi: 10.1016/j.apsusc.2023.158445