[1] |
寻亚非, 李映雪, 王佳俊, 等. 拉鲁湿地植物和底泥氮磷生态化学计量学特征[J]. 环境化学, 2021, 40(7): 2105-2114. doi: 10.7524/j.issn.0254-6108.2020082901
XUN Y F, LI Y X, WANG J J, et al. Ecological stoichiometry characteristics of nitrogen and phosphorus in plants and sediments in Lhalu wetland[J]. Environmental Chemistry, 2021, 40(7): 2105-2114 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082901
|
[2] |
顾诗云, 杨飞, 张毅敏, 等. 淹水胁迫对菖蒲生理特性及其根际细菌群落特征的影响[J]. 生态与农村环境学报, 2020, 36(4): 488-498.
GU S Y, YANG F, ZHANG Y M, et al. Effects of flooding stress on physiological characteristics and rhizosphere bacterial community of Acorus calamus[J]. Journal of Ecology and Rural Environment, 2020, 36(4): 488-498 (in Chinese).
|
[3] |
CRUMP B C, AMARAL-ZETTLER L A, KLING G W. Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils[J]. The ISME Journal, 2012, 6(9): 1629-1639. doi: 10.1038/ismej.2012.9
|
[4] |
余居华, 王乐豪, 康得军, 等. 湖滨带芦苇恢复过程中沉积物氮赋存形态及含量变化: 以巢湖为例[J]. 湖泊科学, 2021, 33(5): 1467-1477. doi: 10.18307/2021.0514
YU J H, WANG L H, KANG D J, et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China[J]. Journal of Lake Sciences, 2021, 33(5): 1467-1477 (in Chinese). doi: 10.18307/2021.0514
|
[5] |
黄红林, 吕丽丽, 吕继涛, 等. 根际化学与生物多样性的表征方法: 组学技术的机遇与挑战[J]. 环境化学, 2024, 43(1): 210-223. doi: 10.7524/j.issn.0254-6108.2022083002
HUANG H L, LYU L L, LYU J T, et al. Characterization methods of rhizosphere chemo-and biodiversity: Opportunities and challenges of omics technology[J]. Environmental Chemistry, 2024, 43(1): 210-223 (in Chinese) doi: 10.7524/j.issn.0254-6108.2022083002
|
[6] |
方娇慧. 湿地类型/挺水植物对淡水湿地沉积物微生物群落的影响机制[D]. 济南: 山东大学, 2020.
FANG J H. The Influence Mechanisms of Wetland Types/Emergent Plants on the Microbial Communities in Freshwater Wetland Sediments[D]. Jinan: Shandong University, 2020 (in Chinese).
|
[7] |
陈信含, 张建, 胡振, 等. 典型人工湿地系统中植物对苯并[a]芘的去除作用及机制[J]. 环境化学, 2023, 42(3): 1042-1048. doi: 10.7524/j.issn.0254-6108.2022101706
CHEN X H, ZHANG J, HU Z, et al. Removal of benzo[a]pyrene by plants in typical constructed wetland system and its mechanism[J]. Environmental Chemistry, 2023, 42(3): 1042-1048 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022101706
|
[8] |
LI X, LI Y Y, WU J S. Different in root exudates and rhizosphere microorganisms effect on nitrogen removal between three emergent aquatic plants in surface flow constructed wetlands[J]. Chemosphere, 2023, 337: 139422. doi: 10.1016/j.chemosphere.2023.139422
|
[9] |
王文林, 王国祥, 万寅婧, 等. 光照和生长阶段对菖蒲根系泌氧的影响[J]. 生态学报, 2013, 33(12): 3688-3696. doi: 10.5846/stxb201209091269
WANG W L, WANG G X, WAN Y J, et al. The influence of light and growth stage on oxygen diffusion capacity of Acorus calamus roots[J]. Acta Ecologica Sinica, 2013, 33(12): 3688-3696 (in Chinese). doi: 10.5846/stxb201209091269
|
[10] |
成水平, 吴振斌, 夏宜琤. 水生植物的气体交换与输导代谢[J]. 水生生物学报, 2003, 27(4): 413-417. doi: 10.3321/j.issn:1000-3207.2003.04.016
CHENG S P, WU Z B, XIA Y C. Review on gas exchange and transportation in macrophytes[J]. Acta Hydrobiologica Sinica, 2003, 27(4): 413-417 (in Chinese). doi: 10.3321/j.issn:1000-3207.2003.04.016
|
[11] |
刘相粉, 王川, 何鹏, 等. 宁夏沙湖沉水植物恢复初期沉积物细菌群落特征研究[J]. 水生态学杂志, 2023, 44(1): 92-100.
LIU X F, WANG C, HE P, et al. Sediment bacterial community structure during restoration of submerged macrophytes in Shahu Lake, Ningxia[J]. Journal of Hydroecology, 2023, 44(1): 92-100 (in Chinese).
|
[12] |
ZHANG F, SHEN J, LI L, et al. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China[J]. Plant and Soil, 2004, 260(1): 89-99.
|
[13] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310. doi: 10.3724/SP.J.1258.2014.00027
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310 (in Chinese). doi: 10.3724/SP.J.1258.2014.00027
|
[14] |
郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
GUO H F, ZHEN Z L, ZHAO L T, et al. Research on the removal effect of tidal flow–subsurface flow constructed wetland on nitrogen in urban polluted water[J]. Environmental Chemistry, 2021, 40(12): 3887-3897 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021053002
|
[15] |
寄博华, 李玮, 常军军, 等. 滇池湖滨湿地不同挺水植物区沉积物细菌群落结构特征[J]. 生态与农村环境学报, 2020, 36(3): 390-398.
JI B H, LI W, CHANG J J, et al. Characteristics of bacterial community structure in sediments with different emergent plants in Dianchi lakeside wetland[J]. Journal of Ecology and Rural Environment, 2020, 36(3): 390-398 (in Chinese).
|
[16] |
赵良元, 陶晶祥, 刘敏. 水生植物对沉积物微生物群落功能多样性的影响[J]. 长江科学院院报, 2015, 32(6): 81-86.
ZHAO L Y, TAO J X, LIU M. Effects of aquatic macrophyte planting on functional diversity of microbial community in sediment[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 81-86 (in Chinese).
|
[17] |
马率. 武昌湖挺水植物-沉积物微生物与营养元素的互作机制研究[D]. 北京: 北京科技大学, 2023.
MA L. The Research of Interaction Mechanisms between Plant-Sediment Microbial System and Nutrient Elements in the Wuchang Lake[D]. Beijing: University of Science and Technology Beijing, 2023 (in Chinese).
|
[18] |
张金萍. 挺水植物根际沉积物氨氧化微生物生态分布特征及硝化作用研究[D]. 镇江: 江苏大学, 2015.
ZHANG J P. Study on ecological distribution characteristics and nitrification of ammonia-oxidizing microorganisms in rhizosphere sediments of emergent plants[D]. Zhenjiang: Jiangsu University, 2015 (in Chinese).
|
[19] |
陈登, 蔡启佳, 田翠翠. 3种沉水植物根际对沉积物中典型氮循环微生物功能基因丰度的影响[J]. 云南农业大学学报(自然科学), 2018, 33(2): 314-323.
CHEN D, CAI Q J, TIAN C C. Effects of the rhizospheres of three submerged plants on the abundances of functional genes of typical nitrogen cycle microorganisms in sediments[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(2): 314-323 (in Chinese).
|
[20] |
马玉, 肖昕. 菖蒲湿地处理含油废水中微生物与净化效果[J]. 工业水处理, 2019, 39(8): 81-85. doi: 10.11894/iwt.2018-0647
MA Y, XIAO X. Microorganisms and purification efficiency in oily wastewater treatment by calamus wetland[J]. Industrial Water Treatment, 2019, 39(8): 81-85 (in Chinese). doi: 10.11894/iwt.2018-0647
|
[21] |
SHI S J, NUCCIO E, HERMAN D J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons[J]. mBio, 2015, 6(4): e00746.
|
[22] |
余俊琪, 徐一峰, 郭瑶, 等. 沉积物镉污染下苦草与根际微生物群落响应特征[J]. 水生生物学报, 2023, 47(11): 1787-1797. doi: 10.7541/2023.2023.0034
YU J Q, XU Y F, GUO Y, et al. Response characteristics of Vallisneria natans and rhizosphere microbial community under sediment-cadmium pollution[J]. Acta Hydrobiologica Sinica, 2023, 47(11): 1787-1797 (in Chinese). doi: 10.7541/2023.2023.0034
|
[23] |
曹洋, 孙鹤铭, 刘利, 等. 冬季衡水湖沉积物微生物群落结构特征及影响因素[J]. 环境工程技术学报, 2023, 13(1): 154-163. doi: 10.12153/j.issn.1674-991X.20210652
CAO Y, SUN H M, LIU L, et al. Microbial community structure characteristics and influencing factors in sediments of Hengshui Lake in winter[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 154-163 (in Chinese). doi: 10.12153/j.issn.1674-991X.20210652
|
[24] |
秦玉春, 邹涛, 张璇, 等. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应[J]. 环境工程技术学报, 2023, 13(3): 1079-1087. doi: 10.12153/j.issn.1674-991X.20220380
QIN Y C, ZOU T, ZHANG X, et al. Differential responses of five wetland plants and their root microbial communities under ofloxacin pollution stress[J]. Journal of Environmental Engineering Technology, 2023, 13(3): 1079-1087 (in Chinese). doi: 10.12153/j.issn.1674-991X.20220380
|
[25] |
FRENZEL P, ROTHFUSS F, CONRAD R. Oxygen profiles and methane turnover in a flooded rice microcosm[J]. Biology and Fertility of Soils, 1992, 14(2): 84-89. doi: 10.1007/BF00336255
|
[26] |
SHELEF O, GROSS A, RACHMILEVITCH S. Role of plants in a constructed wetland: Current and new perspectives[J]. Water, 2013, 5(2): 405-419. doi: 10.3390/w5020405
|
[27] |
宋超, 裘丽萍, 孟顺龙, 等. 人工模拟不同种植密度下四种水生植物的生长状况及对氮、磷的去除[J]. 农业环境科学学报, 2014, 33(1): 178-184. doi: 10.11654/jaes.2014.01.023
SONG C, QIU L P, MENG S L, et al. Growth of four aquatic plants and their removal of total nitrogen and total phosphorus in eutrophication water under different plant density: A laboratory experiment[J]. Journal of Agro-Environment Science, 2014, 33(1): 178-184 (in Chinese). doi: 10.11654/jaes.2014.01.023
|
[28] |
张丁予. 菹草对沉积物微生物群落结构及磷迁移转化的影响研究[D]. 南京: 南京师范大学, 2016.
ZHANG D Y. Effects of Potamogeton crispus on microbial community structure and phosphorus migration and transformation in sediments[D]. Nanjing: Nanjing Normal University, 2016 (in Chinese).
|
[29] |
AJILOGBA C F, OLANREWAJU O S, BABALOLA O O. Plant growth stage drives the temporal and spatial dynamics of the bacterial microbiome in the rhizosphere of Vigna subterranea[J]. Frontiers in Microbiology, 2022, 13: 825377. doi: 10.3389/fmicb.2022.825377
|
[30] |
FAZAL A, YANG M K, WEN Z L, et al. Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types[J]. Scientific Reports, 2021, 11(1): 10788. doi: 10.1038/s41598-021-90251-1
|
[31] |
YANG W, JEELANI N, ZHU Z H, et al. Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands[J]. Applied Soil Ecology, 2019, 135: 38-43. doi: 10.1016/j.apsoil.2018.11.009
|
[32] |
程铁涵, 周昕彦, 曹玉成, 等. 氮形态对沉水植物氮磷去除效果及沉积微生物群落结构的影响[J]. 山东农业大学学报(自然科学版), 2022, 53(4): 560-567.
CHENG T H, ZHOU X Y, CAO Y C, et al. Effects of nitrogen forms on nitrogen and phosphorus removal efficiency of submerged plants and microbial community structure in sediments[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2022, 53(4): 560-567 (in Chinese).
|
[33] |
刘忠航. 双齿围沙蚕对养殖池塘沉积物氮磷赋存形态和微生物群落的影响[D]. 上海: 上海海洋大学, 2022.
LIU Z H. Effects of Perinereis Aibuhitensis on the Occurrence Form of Nitrogen and Phosphorus and Microbial Community Composition in Pond Sediments[D]. Shanghai: Shanghai Ocean University, 2022 (in Chinese).
|
[34] |
HEMPEL M, BOTTÉ S E, NEGRIN V L, et al. The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca Estuary salt marshes[J]. Journal of Soils and Sediments, 2008, 8(5): 289-297. doi: 10.1007/s11368-008-0027-z
|
[35] |
CORDOVEZ V, ROTONI C, DINI-ANDREOTE F, et al. Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome[J]. Science of the Total Environment, 2021, 772: 144825. doi: 10.1016/j.scitotenv.2020.144825
|
[36] |
杨文焕, 甄玉, 姚植, 等. 高原盐化湖泊沉积物氮代谢特征解析[J]. 中国环境科学, 2023, 43(3): 1328-1339. doi: 10.3969/j.issn.1000-6923.2023.03.034
YANG W H, ZHEN Y, YAO Z, et al. Characterization for nitrogen metabolism of sediments in highland saline lake[J]. China Environmental Science, 2023, 43(3): 1328-1339 (in Chinese). doi: 10.3969/j.issn.1000-6923.2023.03.034
|
[37] |
LEE S H, KA J O, CHO J C. Members of the Phylum Acidobacteria are dominant and metabolically active in rhizosphere soil[J]. FEMS Microbiology Letters, 2008, 285(2): 263-269. doi: 10.1111/j.1574-6968.2008.01232.x
|