-
硝酸盐污染正在成为全球性的环境问题,水体中过量的硝酸盐可导致水体富营养化,对水生生态系统和人类健康造成威胁[1 − 2]. 生物反硝化法处理硝酸盐污水以其经济性好、处理效率高等优点,已成为水处理中采用的主流方法[3]. 生物反硝化是通过反硝化微生物进行的. 自然界中最常见的反硝化菌是以有机碳为碳源的异养反硝化菌[4]. 异养反硝化菌利用硝酸盐作为电子受体,有机碳作为电子供体和能源来维持生长,并将硝态氮最终转化为氮气从而完成反硝化脱氮.
在异养反硝化中,有机碳是不可或缺的关键要素. 当水体碳氮比(C/N)较低时,外加碳源的作用就变得尤为重要[5]. 可溶性的甲醇、乙醇、葡萄糖、乙酸钠等物质通常作为外加碳源,但由于其快速溶解而随出水流出生物处理系统,易造成二次污染,需要复杂的连续监测和过程控制系统而导致运行成本高昂[6]. 天然植物类有机碳源(木屑、稻壳、秸秆、玉米芯、花生壳等)虽然价格低廉、材料易得,但存在释碳不稳定、出水色度偏高、含有大量难以被微生物降解成分、易造成系统堵塞等弊端,限制了其广泛使用[7 − 8].
可生物降解聚合物(biodegradable polymers, BDPs)作为固相反硝化缓释碳源的同时,可充当生物膜载体,这种新型材料近年来逐渐在利用生物膜进行反硝化研究中受到重视. BDPs通过微生物分泌的胞外酶被降解,转化成可溶性小分子有机物,这些小分子有机物能为异养反硝化菌提供能源和反硝化必需的电子[9]. BDPs只在微生物作用下分解,这一特性能够避免或减轻上述可溶性碳源投加不足或过量导致的水质问题[10]. BDPs长期释碳速率稳定、易于挂膜、维护简单,与天然植物类碳源相比,能获得更高的反硝化速率[11 − 12],利用BDPs处理低C/N污水已成为研究热点. 已有文章综述了不同类型碳源的作用机制[13]及其在不同目标水体中的应用[3,7]. 目前尚缺乏针对BDPs反硝化碳源的系统性综述.
本文从BDPs缓释碳源类型、反硝化性能、影响因素、脱氮机制、微生物群落、脱氮成本评价以及共存污染物去除等多方面展开综述和讨论,并对未来研究方向提出展望,以期为BDPs反硝化技术研究和应用提供参考和依据.
可生物降解聚合物作为固相反硝化碳源的研究进展
Research progress in biodegradable polymers as the carbon sources of solid-phase denitrification process
-
摘要: 碳源是生物反硝化法处理低碳氮比硝酸盐污水的必要物质. 传统的水溶性碳源投加量难以控制,易导致出水水质恶化,需要寻找一种释碳稳定、安全高效的替代碳源. 可生物降解聚合物(biodegradable polymers,BDPs)是一类人工合成的高分子有机物,已被证实可作为新型的反硝化缓释碳源. 其具有反硝化效率高、安全稳定、操作简单等优点,近年来被广泛报道. 归纳总结了BDPs碳源类型及其体系的反硝化性能和影响因素,讨论了BDPs体系脱氮机制及生物膜群落结构与功能,评价了BDPs反硝化脱氮的成本. 提出发展成本相对低廉的BDPs复合碳源、阐明运行条件对BDPs反硝化的影响机制、通过优化微生物群落来构建高效BDPs反硝化系统以及加强共存污染物去除等未来重点研究方向,以期为可生物降解聚合物的反硝化脱氮研究和应用提供参考和依据.Abstract: Carbon source is essential for biological denitrification of the nitrate wastewater with low carbon/nitrogen ratio. However, it is difficult to control the dosage of traditional water-soluble carbon source, and overdose will easily cause deterioration of effluent water quality. Thus, it is necessary to develop slow-release, safe, and efficient alternative carbon source. Synthetic biodegradable polymers (BDPs), a kind of high molecular organic compound, has been proven to be the potential carbon source meeting these demands. With the advantages of high denitrification efficiency, safety, stability, and simple operation, BDPs has been extensively studied as slow-release carbon source of denitrification. In this study, the carbon source types of BDPs, the denitrification performance and influencing factors of BDPs system were summarized. The denitrification mechanism of BDPs system, the structure and function of microbial community were discussed. The cost of BDPs for denitrification was evaluated. Several key directions for future research, such as developing low-cost composite BDPs carbon sources, elucidating the influence mechanism of operating conditions on BDPs denitrification, building efficient BDPs denitrification systems by optimizing microbial community, and enhancing the co-existing pollutants removal, were proposed to provide reference and basis for the research and application for denitrification using biodegradable polymers.
-
Key words:
- biological nitrogen removal /
- sewage treatment /
- solid carbon source /
- mixed carbon sources /
- nitrate
-
表 1 不同BDPs碳源类型及其在反硝化系统中反硝化性能
Table 1. Denitrification performance of different BDPs as carbon source in denitrification system
碳源类型
Carbon sources进水NO3−-N/
(mg·L−1)
Influent NO3−-NNO3−-N去除速率/(mg·L−1·h−1)
NO3−-N removal rate
可溶性有机碳DOC,总有机碳
TOC/(mg·L−1)
Dissolved organic carbon,
total organic carbon水力停留
时间/h
HRT文献
ReferencesPCL 81.1—132.75 11.25 进水与出水DOC差值:-2.8—63.43 5 [23] PCL 200 30.3 出水DOC:(26.12±3.12)—(53.06±5.93) 5.5 [24] PCL 60—80 7.92—23.33 出水比进水TOC增加1.7—5.2 3—6 [25] PHBV 15 32.08 出水DOC:39.75—82.42 0.5 [26] PHBV/PLA 10 9.58 稳定期出水DOC:9±3.4 2 [12] PHBV/PLA 15 13.95 稳定期出水DOC:10以下 1 [27] PHBV/木纤维素 15 14.02 稳定期出水DOC:60以下 1 [27] PBS 146 22.08±7.92(盐度0‰)
27.5±5(盐度25‰)出水DOC:(136.11±49.52)(盐度0‰),
(202.51±118.90)(盐度25‰)2 [19] PBS 100—150 26.67—5.83 未见明显的DOC积累 5 [28] PBS/竹粉 100 28.33—34.58 进水约80—115,出水约90—160 2 [22] PBS/竹粉 75 5.42±1.25(盐度0‰)
2.92±0.83(盐度25‰)两个盐度条件下出水DOC均低于15 4 [29] 表 2 不同碳源处理硝酸盐的成本评价
Table 2. Cost evaluation of different carbon sources for nitrate removal
碳源类型
Carbon sources碳源单价/(元·kg−1)
Carbon source unit-price碳源消耗/ (kg·kg−1 NO3−-N)
Carbon source consumption反硝化成本(元·kg−1 NO3−-N)
Denitrification cost/文献
ReferencesPHB — — 145.5—257.8 [48] PLA 28.8 1.5—1.9 43.2—54.7 [7] PHBV/PLA 21.3 1.4 29.8 [12] PHBV 31.9 1.5—1.7 47.9—54.2 [4] PHBV/淀粉 17.3 2.08—2.60 36.0—45.0 [4] PHBV/竹粉 16.6 1.69—1.86 28.1—30.9 [4] PBS/竹粉 15.2 1.3—1.5 19.8—22.8 [7] PCL 28.4—34.7 1.3—1.8 36.9—62.5 [70] PCL/淀粉 16.8 2.0—3.1 33.6—52.1 [7] 乙酸 9.6 3.5 33.6 [7] 乙醇 5.9 2.0—3.3 11.8—19.5 [12] 甲醇 2.3 2.0—3.2 4.6—7.4 [12] -
[1] LIU Y, ZHANG X M, WANG J L. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism[J]. Chemosphere, 2022, 291(Pt 1): 132728. [2] 袁世红, 宋新山, 曹新, 等. 几种可作固相碳源的硝酸根吸附剂的制备及其性能[J]. 环境化学, 2019, 38(3): 589-598. doi: 10.7524/j.issn.0254-6108.2018042707 YUAN S H, SONG X S, CAO X, et al. Preparation and characterization of nitrate adsorbents with slow-releasing carbon capacity[J]. Environmental Chemistry, 2019, 38(3): 589-598 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018042707
[3] ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source-based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669 [4] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001 [5] YANG Z C, YANG L H, WEI C J, et al. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration[J]. Bioresource Technology, 2018, 248: 98-103. doi: 10.1016/j.biortech.2017.07.188 [6] JIANG L, WU A Q, FANG D X, et al. Denitrification performance and microbial diversity using starch-polycaprolactone blends as external solid carbon source and biofilm carriers for advanced treatment[J]. Chemosphere, 2020, 255: 126901. doi: 10.1016/j.chemosphere.2020.126901 [7] FU X R, HOU R R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061 [8] 徐玉金, 汤映莹, 高依林, 等. 新型LDHs基缓释碳源的制备及应用[J]. 环境化学, 2022, 41(12): 3840-3854. doi: 10.7524/j.issn.0254-6108.2021080908 XU Y J, TANG Y Y, GAO Y L, et al. Preparation and application of a novel LDHs-based slow-release carbon source[J]. Environmental Chemistry, 2022, 41(12): 3840-3854 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021080908
[9] SUN H M, YANG Z C, WEI C J, et al. Nitrogen removal performance and functional genes distribution patterns in solid-phase denitrification sub-surface constructed wetland with micro aeration[J]. Bioresource Technology, 2018, 263: 223-231. doi: 10.1016/j.biortech.2018.04.078 [10] SUN H M, ZHOU Q, ZHAO L, et al. Enhanced simultaneous removal of nitrate and phosphate using novel solid carbon source/zero-valent iron composite[J]. Journal of Cleaner Production, 2021, 289: 125757. doi: 10.1016/j.jclepro.2020.125757 [11] YANG Z C, SUN H M, ZHOU Q, et al. Nitrogen removal performance in pilot-scale solid-phase denitrification systems using novel biodegradable blends for treatment of waste water treatment plants effluent[J]. Bioresource Technology, 2020, 305: 122994. doi: 10.1016/j.biortech.2020.122994 [12] SUN H M, YANG Z C, YANG F F, et al. Enhanced simultaneous nitrification and denitrification performance in a fixed-bed system packed with PHBV/PLA blends[J]. International Biodeterioration & Biodegradation, 2020, 146: 104810. [13] WANG H S, CHEN N, FENG C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521. doi: 10.1016/j.scitotenv.2021.146521 [14] WU W Z, YANG F F, YANG L H. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier[J]. Bioresource Technology, 2012, 118: 136-140. doi: 10.1016/j.biortech.2012.04.066 [15] 杨飞飞, 吴为中. 以PHBV为碳源和生物膜载体的生物反硝化研究[J]. 中国环境科学, 2014, 34(7): 1703-1708. YANG F F, WU W Z. Biological denitrification using PHBV as carbon source and biofilm carrier[J]. China Environmental Science, 2014, 34(7): 1703-1708 (in Chinese).
[16] ZHANG S S, SUN X B, FAN Y T, et al. Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source[J]. Bioresource Technology, 2017, 241: 500-507. doi: 10.1016/j.biortech.2017.05.185 [17] LI P, ZUO J E, WANG Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83. doi: 10.1016/j.watres.2016.02.009 [18] YANG L, GUO L K, REN Y X, et al. Denitrification performance, biofilm formation and microbial diversity during startup of slow sand filter using powdery polycaprolactone as solid carbon source[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105561. doi: 10.1016/j.jece.2021.105561 [19] ZHU S M, DENG Y L, RUAN Y J, et al. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment[J]. Bioresource Technology, 2015, 192: 603-610. doi: 10.1016/j.biortech.2015.06.021 [20] 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8): 2315-2319. FAN Z X, WANG J L. Denitrification using polylactic acid as solid carbon source[J]. Environmental Science, 2009, 30(8): 2315-2319 (in Chinese).
[21] BOLEY A, MÜLLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering, 2000, 22(1/2): 75-85. [22] LIU D Z, LI J W, LI C W, et al. Poly(butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system[J]. Scientific Reports, 2018, 8: 3289. doi: 10.1038/s41598-018-21702-5 [23] LUO G Z, HOU Z W, TIAN L Q, et al. Comparison of nitrate-removal efficiency and bacterial properties using PCL and PHBV polymers as a carbon source to treat aquaculture water[J]. Aquaculture and Fisheries, 2020, 5(2): 92-98. doi: 10.1016/j.aaf.2019.04.002 [24] LUO G Z, XU G M, GAO J F, et al. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors[J]. Journal of Environmental Sciences, 2016, 43: 147-152. doi: 10.1016/j.jes.2015.10.022 [25] CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9): 1310-1316. doi: 10.1016/j.chemosphere.2013.02.064 [26] XU Z S, DAI X H, CHAI X L. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier[J]. Biochemical Engineering Journal, 2019, 146: 186-193. doi: 10.1016/j.bej.2019.03.019 [27] 朱擎, 杨飞飞, 赵兰, 等. 两种共混BDPs作为生物膜载体和碳源的脱氮研究比较[J]. 北京大学学报(自然科学版), 2015, 51(3): 525-530. ZHU Q, YANG F F, ZHAO L, et al. Comparison of two biodegradable polymer blends as biofilm carrier and carbon source for nitrogen removal[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(3): 525-530 (in Chinese).
[28] RUAN Y J, DENG Y L, GUO X S, et al. Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier[J]. Bioresource Technology, 2016, 216: 1004-1013. doi: 10.1016/j.biortech.2016.06.056 [29] QI W H, TAHERZADEH M J, RUAN Y J, et al. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite[J]. Bioresource Technology, 2020, 305: 123033. doi: 10.1016/j.biortech.2020.123033 [30] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348 [31] ZHOU Q, SUN H M, JIA L X, et al. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species[J]. Bioresource Technology, 2022, 347: 126724. doi: 10.1016/j.biortech.2022.126724 [32] 吴为中, 赵柳, 周琦, 等. 基于黄铁矿与PHBV协同自养-异养反硝化试验研究[J]. 应用基础与工程科学学报, 2022, 30(2): 282-294. WU W Z, ZHAO L, ZHOU Q, et al. Laboratory-scale study on combined autotrophic-heterotrophic denitrification based on pyrite and PHBV[J]. Journal of Basic Science and Engineering, 2022, 30(2): 282-294 (in Chinese).
[33] YI C H, QIN W, WEN X H. Renovated filter filled with poly-3-hydroxybutyrateco-hydroxyvalerate and granular activated carbon for simultaneous removal of nitrate and PPCPs from the secondary effluent[J]. Science of the Total Environment, 2020, 749: 141494. doi: 10.1016/j.scitotenv.2020.141494 [34] XU Z S, SONG L Y, DAI X H, et al. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria[J]. Chemosphere, 2018, 197: 96-104. doi: 10.1016/j.chemosphere.2018.01.023 [35] 易成豪, 秦伟, 陈湛, 等. 聚己内酯与聚羟基丁酸戊酸酯的脱氮性能对比[J]. 环境科学, 2019, 40(9): 4143-4151. YI C H, QIN W, CHEN Z, et al. Comparison of polycaprolactone and poly-3-hydroxybutyrate-co-3-hydroxyvalerate for nitrogen removal[J]. Environmental Science, 2019, 40(9): 4143-4151 (in Chinese).
[36] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425. doi: 10.1016/j.biortech.2018.07.029 [37] SHAHABI Z A, NAEIMPOOR F. Enhanced heterotrophic denitrification: Effect of dairy industry sludge acclimatization and operating conditions[J]. Applied Biochemistry and Biotechnology, 2014, 173(3): 741-752. doi: 10.1007/s12010-014-0884-4 [38] ZHONG H, CHENG Y, AHMAD Z, et al. Solid-phase denitrification for water remediation: Processes, limitations, and new aspects[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1113-1130. doi: 10.1080/07388551.2020.1805720 [39] YANG Z C, ZHOU Q, SUN H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study[J]. Water Research, 2021, 196: 117067. doi: 10.1016/j.watres.2021.117067 [40] 李加伟. 基于可生物降解聚合物的循环水养殖废水生物脱氮技术研究[D]. 杭州: 浙江大学, 2019. LI J W. Study on biological nitrogen removal by using BDPs for RAS wastewater treatment[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
[41] LUO G Z, XU G M, TAN H X, et al. Effect of dissolved oxygen on denitrification using polycaprolactone as both the organic carbon source and the biofilm carrier[J]. International Biodeterioration & Biodegradation, 2016, 110: 155-162. [42] LUO F Z, ZHANG J S, WEI Q, et al. Insights into the relationship between denitrification and organic carbon release of solid-phase denitrification systems: Mechanism and microbial characteristics[J]. Bioresource Technology, 2022, 364: 128044. doi: 10.1016/j.biortech.2022.128044 [43] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198 [44] CHU L B, WANG J L. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity[J]. Chemosphere, 2016, 155: 463-470. doi: 10.1016/j.chemosphere.2016.04.090 [45] TAKAHASHI M, YAMADA T, TANNO M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate[J]. Microbes and Environments, 2011, 26(3): 212-219. doi: 10.1264/jsme2.ME11107 [46] HANG Q Y, WANG H Y, CHU Z S, et al. Application of plant carbon source for denitrification by constructed wetland and bioreactor: Review of recent development[J]. Environmental Science and Pollution Research, 2016, 23(9): 8260-8274. doi: 10.1007/s11356-016-6324-y [47] HIRAISHI A, KHAN S T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment[J]. Applied Microbiology and Biotechnology, 2003, 61(2): 103-109. doi: 10.1007/s00253-002-1198-y [48] ZHANG Q, JI F Y, XU X Y. Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification[J]. Chemical Engineering Journal, 2016, 283: 604-613. doi: 10.1016/j.cej.2015.07.085 [49] XIA L, LI X M, FAN W H, et al. Denitrification performance and microbial community of bioreactor packed with PHBV/PLA/rice hulls composite[J]. Science of the Total Environment, 2022, 803: 150033. doi: 10.1016/j.scitotenv.2021.150033 [50] CHU L B, WANG J L. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio[J]. Chemosphere, 2011, 83(1): 63-68. doi: 10.1016/j.chemosphere.2010.12.077 [51] HE Q L, WANG H Y, CHEN L, et al. Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures[J]. Journal of Hazardous Materials, 2020, 384: 121454. doi: 10.1016/j.jhazmat.2019.121454 [52] FENG L, PI S, ZHU W, et al. Nitrification and aerobic denitrification in solid phase denitrification systems with various biodegradable carriers for ammonium-contaminated water purification[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(11): 3569-3577. [53] van RIJN J, TAL Y, SCHREIER H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364-376. doi: 10.1016/j.aquaeng.2005.04.004 [54] GUTIERREZ-WING M T, MALONE R F, RUSCH K A. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification[J]. Aquacultural Engineering, 2012, 51: 36-43. doi: 10.1016/j.aquaeng.2012.07.002 [55] LUO G Z, LI L, LIU Q, et al. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier[J]. Bioresource Technology, 2014, 171: 152-158. doi: 10.1016/j.biortech.2014.08.055 [56] HAO Z L, ALI A, REN Y, et al. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment[J]. Science of the Total Environment, 2022, 847: 157452. doi: 10.1016/j.scitotenv.2022.157452 [57] ZHANG Q, JI F Y, XU X Y. Optimization of nitrate removal from wastewater with a low C/N ratio using solid-phase denitrification[J]. Environmental Science and Pollution Research, 2016, 23(1): 698-708. doi: 10.1007/s11356-015-5308-7 [58] JIANG L, ZHANG Y F, SHEN Q S, et al. The metabolic patterns of the complete nitrates removal in the biofilm denitrification systems supported by polymer and water-soluble carbon sources as the electron donors[J]. Bioresource Technology, 2021, 342: 126002. doi: 10.1016/j.biortech.2021.126002 [59] 罗国芝, 侯志伟, 高锦芳, 等. 不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析[J]. 环境工程学报, 2018, 12(2): 572-580. LUO G Z, HOU Z W, GAO J F, et al. Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 572-580 (in Chinese).
[60] XU Z S, DAI X H, CHAI X L. Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor[J]. Biochemical Engineering Journal, 2018, 131: 24-30. doi: 10.1016/j.bej.2017.12.008 [61] ZHU S M, ZHANG L P, YE Z Y, et al. Denitrification performance and bacterial ecological network of a reactor using biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as an electron donor for nitrate removal from aquaculture wastewater[J]. Science of the Total Environment, 2023, 857: 159637. doi: 10.1016/j.scitotenv.2022.159637 [62] FANG D X, WU A Q, HUANG L P, et al. Polymer substrate reshapes the microbial assemblage and metabolic patterns within a biofilm denitrification system[J]. Chemical Engineering Journal, 2020, 387: 124128. doi: 10.1016/j.cej.2020.124128 [63] HAN F, LI X, ZHANG M R, et al. Solid-phase denitrification in high salinity and low-temperature wastewater treatment[J]. Bioresource Technology, 2021, 341: 125801. doi: 10.1016/j.biortech.2021.125801 [64] MIAO Y, LIAO R H, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042 [65] SHEN Q S, JI F Y, WEI J Z, et al. The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis[J]. Science of the Total Environment, 2020, 732: 139333. doi: 10.1016/j.scitotenv.2020.139333 [66] JIA L X, SUN H M, ZHOU Q, et al. Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in Southern China: Enhanced nitrogen removal and mechanism[J]. Journal of Environmental Management, 2021, 292: 112750. doi: 10.1016/j.jenvman.2021.112750 [67] 杨惠兰, 张丹, 兰书焕, 等. 聚己内酯复合固体碳源的制备及其深度脱氮性能研究[J]. 环境科学学报, 2022, 42(5): 263-273. YANG H L, ZHANG D, LAN S H, et al. Preparation of polycaprolactone composite solid carbon source and its tertiary nitrogen removal[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 263-273 (in Chinese).
[68] WANG X J, WANG W Q, ZHANG Y, et al. Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source[J]. Bioresource Technology, 2019, 288: 121506. doi: 10.1016/j.biortech.2019.121506 [69] WU B R, ZHOU M, SONG L Y, et al. Mechanism insights into polyhydroxyalkanoate-regulated denitrification from the perspective of pericytoplasmic nitrate reductase expression[J]. Science of the Total Environment, 2021, 754: 142083. doi: 10.1016/j.scitotenv.2020.142083 [70] LI C Y, WANG H Y, YAN G K, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. Journal of Environmental Sciences, 2022, 118: 32-45. doi: 10.1016/j.jes.2021.08.045