-
随着社会发展,水资源短缺问题日益严重. 在众多水处理技术中,多相光催化氧化技术具有操作简便、有机物矿化效率高、催化剂能循环利用等优点,在有机废水资源化利用中具有广阔的应用前景[1 − 2].
多相光催化氧化体系中,氧化剂主要有过氧化氢(H2O2)和过硫酸盐(PS)两大类[3 − 4],催化剂则通常是将过渡金属离子(Fe3+、Cu2+、Co2+等)负载到不同的载体上(活性炭、多孔材料等)制备得到[5 − 7]. MCM-41硅基介孔分子筛具有骨架结构稳定、合成简便、孔道结构规则、孔径尺寸可调节、比表面积大等优点,是多相光催化剂载体开发研究的热点[8 − 10]. 将铁、铜等过渡金属负载到MCM-41介孔分子筛表面或掺杂进骨架之中,可以制备高效活化H2O2或PS降解有机污染物的多相催化剂[11 − 14]. Deng等[13]发现,Fe/MCM-41介孔材料对H2O2具有很高的光催化活性,相应的催化氧化体系能在120 min内高效降解MB染料. Schlichter等[14]合成了对PS有高催化活性的铜基MCM-41多相催化剂,对应的催化氧化体系能在2 h内有效降解MO染料. 此外,MCM-41介孔分子筛表面的负电性能够在一定程度上抑制OH−对活性组分的沉淀反应,从而有望拓展多相光催化氧化体系的pH适用范围[15 − 16].
空间位阻效应是影响氧化剂作用于有机污染物的重要因素[17 − 18]. 例如,杨欢欢[17]进行了硫酸根自由基降解全氟羧酸化合物的DFT计算,发现正是空间位阻效应导致体积较大的硫酸根自由基只能进攻未被氟原子包裹的端基碳原子. Lee等[18]在研究PS活化机制和活性物种形成途径时发现,更大的空间位阻使过二硫酸盐(PDS)对有机物的反应性较过一硫酸盐(PMS)更低. 目前,在多相光催化氧化领域中,缺乏空间位阻效应影响催化剂活化氧化剂的研究. 过硫酸盐(PS)与H2O2分子结构相似,H2O2上的一个H原子被HSO3−取代即为过一硫酸盐(PMS,HSO5−),若两个H原子全被HSO3−取代便得到同样具有对称结构的过二硫酸盐(PDS,S2O82-)[19]. 因此,HSO5−和S2O82-相较于H2O2具备更大的分子尺寸. 介孔分子筛催化剂在活化分子尺寸相差较大的PDS和H2O2时,空间位阻效应的差异会更为显著,但目前关于介孔分子筛催化剂构型对氧化剂PDS和H2O2活化影响的研究鲜见报道.
基于此,本文选取Fe-MCM-41和Cu-MCM-41作为多相光催化剂,选取同样具有对称结构但分子尺寸相差较大的H2O2和PDS作为氧化剂,构建了中性条件下的多相光催化氧化降解金橙Ⅱ体系,分析了催化剂构型、孔道尺寸和电负性对Fe-MCM-41和Cu-MCM-41活化H2O2和PDS能力的影响,揭示了Fe-MCM-41和Cu-MCM-41光催化活化H2O2和PDS的构-效关系,为介孔分子筛光催化剂的开发利用提供理论依据.
中性条件Fe/Cu-MCM-41光催化活化H2O2/PDS的构-效关系
The structure-activity relationship of Fe/Cu-MCM-41 on photocatalytic activation of H2O2/PDS under neutral condition
-
摘要: 本文在室温下制备了Fe-MCM-41和Cu-MCM-41,利用XRD、BET、SEM和TEM等手段对催化剂进行了表征. 选取金橙Ⅱ为探针分子、H2O2和PDS作为氧化剂,构建了多相光催化氧化体系,研究中性条件下Fe-MCM-41和Cu-MCM-41光催化活化H2O2和PDS的构-效关系. 结果表明,Fe-MCM-41为同晶替换型催化剂,Cu-MCM-41为同晶替换和CuO孤岛共存型催化剂. 中性条件下,H2O2受空间位阻和电性排斥影响小,能被Fe-MCM-41孔道内外铁离子高效光催化产生·OH,但难以被Cu-MCM-41中同晶替换和孤岛的铜离子高效光催化;PDS由于受到空间位阻和电性排斥的影响,难以进入Fe-MCM-41和Cu-MCM-41孔道之中,但Cu-MCM-41表面和孤岛上的铜离子能高效光催化PDS产生1O2和SO4−·. UV+H2O2体系中加入Fe-MCM-41,金橙Ⅱ的脱色速率提升了52.9%,反应180 min时体系矿化率从43%提高到了57%;UV+PDS体系中加入Cu-MCM-41,金橙Ⅱ的脱色速率提升了38.7%,反应180 min时体系矿化率从48%提高到了76%. 本研究为介孔分子筛光催化剂的开发利用提供理论依据.Abstract: In this study, Fe-MCM-41 and Cu-MCM-41 were synthesized at room temperature and were characterized by XRD, BET, SEM and TEM techniques. In the heterogeneous photocatalytic oxidation system, Fe-MCM-41 and Cu-MCM-41, Orange Ⅱ, H2O2 and PDS were selected as catalysts, modal pollutant and oxidants, respectively. The structure-activity relationship of Fe-MCM-41 and Cu-MCM-41 on photocatalytic activation of H2O2 and PDS under neutral condition was discussed. The results showed that the configuration of Fe-MCM-41 was isomorphous substitution, and the configuration of Cu-MCM-41 was isomorphous substitution coexisting with CuO island. Under neutral condition, it was easy for H2O2 to enter the pore of Fe-MCM-41 or Cu-MCM-41 since H2O2 was less influenced by steric hindrance and electrical repulsion. ·OH could be efficiently generated through H2O2 photo-activation by iron ions inside and outside the pore of Fe-MCM-41, but it was difficult for H2O2 to be efficiently catalyzed by copper ions in Cu-MCM-41. It was hard for PDS to enter the pore of Fe-MCM-41 or Cu-MCM-41 due to the higher steric hindrance and electrical repulsion under neutral condition, but the copper ions on the surface of Cu-MCM-41 and CuO island could efficiently photo-activate PDS to produce 1O2 and SO4−·. When Fe-MCM-41 was added into UV+H2O2 system, the enhanced efficiency of Orange Ⅱ decolorization rate could reach 52.9%, and its mineralization increased from 43% to 57% at 180 min. When Cu-MCM-41 was added into UV+PDS system, the enhanced efficiency of Orange Ⅱ decolorization rate could reach 38.7%, and its mineralization increased from 48% to 76% at 180 min. This study provided a theoretical basis for the development and utilization of mesoporous molecular sieve photocatalysts.
-
Key words:
- MCM-41 /
- H2O2 /
- PDS /
- photocatalytic activation /
- structure-activity relationship.
-
表 1 不同体系中金橙Ⅱ脱色的一级动力学常数
Table 1. The first order kinetics of Orange Ⅱ degradation under different systems
反应体系
Reaction systemk/min−1 R2 UV+H2O2 0.017 1.000 UV+H2O2+Fe-MCM-41 0.026 0.981 UV+H2O2+Cu-MCM-41 0.015 0.997 UV+PDS 0.031 0.991 UV+PDS+Fe-MCM-41 0.028 0.993 UV+PDS+Cu-MCM-41 0.043 0.992 -
[1] SARAVANAN A, DEIVAYANAI V C, KUMAR P S, et al. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook[J]. Chemosphere, 2022, 308: 136524. doi: 10.1016/j.chemosphere.2022.136524 [2] WANG L Y, LUO D, YANG J P, et al. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes[J]. Journal of Cleaner Production, 2022, 375: 134118. doi: 10.1016/j.jclepro.2022.134118 [3] 钟欣, 吴迪, 张凯欣, 等. 光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ[J]. 环境化学, 2019, 38(12): 2860-2868. doi: 10.7524/j.issn.0254-6108.2019070806 ZHONG X, WU D, ZHANG K X, et al. Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ[J]. Environmental Chemistry, 2019, 38(12): 2860-2868 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019070806
[4] 张艺伟, 卫培垚, 陈建新, 等. 可见光下苯醌类化合物诱导磷酸铁芬顿反应的铁离子源汇机制[J]. 环境化学, 2023, 42(2): 635-645. doi: 10.7524/j.issn.0254-6108.2021102005 ZHANG Y W, WEI P Y, CHEN J X, et al. Iron-ion source and sink mechanism for Fenton reaction based on iron phosphate induced by benzoquinones under visible light[J]. Environmental Chemistry, 2023, 42(2): 635-645 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102005
[5] ZHAO J J, SUN Y J, ZHANG Y, et al. Heterogeneous activation of persulfate by activated carbon supported iron for efficient amoxicillin degradation[J]. Environmental Technology & Innovation, 2021, 21: 101259. [6] LAM F L Y, YIP A C K, HU X J. Copper/MCM-41 as a highly stable and pH-insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of organic wastewater[J]. Industrial & Engineering Chemistry Research, 2007, 46(10): 3328-3333. [7] HUANG T Y, CHEN J B, WANG Z M, et al. Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation[J]. Environmental Science and Pollution Research, 2017, 24(10): 9651-9661. doi: 10.1007/s11356-017-8648-7 [8] 孙文静, 王亚旻, 卫皇曌, 等. Fe-MCM-41催化臭氧氧化间甲酚废水[J]. 环境科学, 2015, 36(4): 1345-1351. SUN W J, WANG Y M, WEI H Z, et al. Degradation of m-cresol with Fe-MCM-41 in catalytic ozonation[J]. Environmental Science, 2015, 36(4): 1345-1351 (in Chinese).
[9] ALAMGHOLILOO H, NAZARI S, ASGARI E, et al. Facile fabrication of Z-scheme TiO2/ZnO@MCM-41 heterojunctions nanostructures for photodegradation and bioactivity performance[J]. Journal of Molecular Liquids, 2022, 364: 119990. doi: 10.1016/j.molliq.2022.119990 [10] LIU D P, LIN M X, CHEN W R, et al. Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron: The interfacial reaction induced by hydrophobic sites and Lewis acid sites[J]. Chemosphere, 2022, 292: 133544. doi: 10.1016/j.chemosphere.2022.133544 [11] SCHLICHTER S, DENNEHY M, ALVAREZ M. Activation of peroxymonosulfate and persulfate by metal loaded mesoporous catalysts for orange G dye degradation[J]. Environmental Processes, 2019, 6(4): 805-818. doi: 10.1007/s40710-019-00389-4 [12] SUN X W, XU D Y, DAI P, et al. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator[J]. Chemical Engineering Journal, 2020, 402: 125881. doi: 10.1016/j.cej.2020.125881 [13] DENG Y X, XU X D, WANG R, et al. Characterization and photocatalytic evaluation of Fe-loaded mesoporous MCM-41 prepared using iron and silicon sources extracted from iron ore tailing[J]. Waste and Biomass Valorization, 2020, 11(4): 1491-1498. doi: 10.1007/s12649-018-0460-1 [14] SCHLICHTER S, SAPAG K, DENNEHY M, et al. Metal-based mesoporous materials and their application as catalysts for the degradation of methyl orange azo dye[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5207-5214. doi: 10.1016/j.jece.2017.09.039 [15] MUTO S, IMAI H. Relationship between mesostructures and pH conditions for the formation of silica-cationic surfactant complexes[J]. Microporous and Mesoporous Materials, 2006, 95(1/2/3): 200-205. [16] 范钧朝, 陈爱因, 陈诗, 等. 过渡金属Fe、Co、Ni介孔分子筛MCM-41催化剂的制备及其氧化性能[J]. 环境化学, 2016, 35(6): 1116-1124. doi: 10.7524/j.issn.0254-6108.2016.06.2015102201 FAN J Z, CHEN A Y, CHEN S, et al. Synthesis of Fe, Co, Ni loaded MCM-41 mesoporous molecular sieves and their catalytic oxidation performance[J]. Environmental Chemistry, 2016, 35(6): 1116-1124 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015102201
[17] 杨欢欢. 全氟羧酸化合物降解机理的DFT研究[D]. 镇江: 江苏科技大学, 2019. YANG H H. DFT study on the degradation mechanism of perfluorocarboxylic acid compounds[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019 (in Chinese).
[18] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [19] 刘路明, 高志敏, 邓兆雄, 等. 过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用[J]. 环境化学, 2022, 41(5): 1702-1717. doi: 10.7524/j.issn.0254-6108.2021010601 LIU L M, GAO Z M, DENG Z X, et al. Activation of persulfate and its mechanism and application in oxidative degradation of antibiotics in water[J]. Environmental Chemistry, 2022, 41(5): 1702-1717 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021010601
[20] MELÉNDEZ-ORTIZ H I, PERERA-MERCADO Y, MERCADO-SILVA J A, et al. Functionalization with amine-containing organosilane of mesoporous silica MCM-41 and MCM-48 obtained at room temperature[J]. Ceramics International, 2014, 40(7): 9701-9707. doi: 10.1016/j.ceramint.2014.02.051 [21] 苗笑增, 戴慧旺, 陈建新, 等. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验[J]. 环境科学, 2018, 39(3): 1202-1211. MIAO X Z, DAI H W, CHEN J X, et al. Experiment to enhance catalytic activity of α-FeOOH in heterogeneous UV-Fenton system by addition of oxalate[J]. Environmental Science, 2018, 39(3): 1202-1211 (in Chinese).
[22] FENG J Y, HU X J, YUE P L. Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: A comparative study[J]. Environmental Science & Technology, 2004, 38(21): 5773-5778. [23] GRÜN M, UNGER K K, MATSUMOTO A, et al. Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology[J]. Microporous and Mesoporous Materials, 1999, 27(2/3): 207-216. [24] SHEN S H, CHEN J, KOODALI R T, et al. Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2014, 150/151: 138-146. doi: 10.1016/j.apcatb.2013.12.014 [25] 张安超, 张洪良, 宋军, 等. Mn-Co/MCM-41吸附剂表征及脱除烟气中单质汞研究[J]. 中国环境科学, 2015, 35(5): 1319-1327. ZHANG A C, ZHANG H L, SONG J, et al. Characterization and performance of Mn-Co/MCM-41 for elemental mercury removal from simulated flue gas[J]. China Environmental Science, 2015, 35(5): 1319-1327 (in Chinese).
[26] LAN B Y, HUANG R H, LI L S, et al. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst[J]. Chemical Engineering Journal, 2013, 219: 346-354. doi: 10.1016/j.cej.2012.12.083 [27] SONG T H, LI G Q, HU R H, et al. Degradation of antibiotics via UV-activated peroxodisulfate or peroxymonosulfate: A review[J]. Catalysts, 2022, 12(9): 1025. doi: 10.3390/catal12091025 [28] 龙学军. 降解染料废水类Fenton新体系构建及机理研究[D]. 武汉: 武汉大学, 2015. LONG X J. A study on the construction and mechanism of the new Fenton-like system for degradation of dye waste water[D]. Wuhan: Wuhan University, 2015 (in Chinese).
[29] ZHANG T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10): 5868-5875. [30] 韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理[J]. 环境化学, 2020, 39(3): 735-744. doi: 10.7524/j.issn.0254-6108.2019110101 HAN Y, HUANG M J, ZHOU T, et al. Interfacial reaction mechanism of copper oxide activating persulfate[J]. Environmental Chemistry, 2020, 39(3): 735-744 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019110101
[31] 苏海英, 王盈霏, 王枫亮, 等. g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J]. 中国环境科学, 2017, 37(1): 195-202. SU H Y, WANG Y F, WANG F L, et al. Preparation of g-C3N4/TiO2 composites and the mechanism research of the photocatalysis degradation of ibuprofen[J]. China Environmental Science, 2017, 37(1): 195-202 (in Chinese).
[32] SUN H Q, KWAN C, SUVOROVA A, et al. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals[J]. Applied Catalysis B: Environmental, 2014, 154/155: 134-141. doi: 10.1016/j.apcatb.2014.02.012 [33] WANG Q, ZHOU D M, LIN K F, et al. Carbon nitride-based cuprous catalysts induced nonradical-led oxidation by peroxydisulfate: Role of cuprous and dissolved oxygen[J]. Chemical Engineering Journal, 2021, 419: 129667. doi: 10.1016/j.cej.2021.129667 [34] LEE H, LEE H J, SEO J, et al. Activation of oxygen and hydrogen peroxide by copper(II) coupled with hydroxylamine for oxidation of organic contaminants[J]. Environmental Science & Technology, 2016, 50(15): 8231-8238. [35] 杨奕飞, 杨天学, 吴代赦, 等. 改性沼渣生物质炭活化过硫酸盐降解酚类性能[J]. 中国环境科学, 2022, 42(5): 2153-2160. YANG Y F, YANG T X, WU D S, et al. Study on the performance of modified biogas residue biomass charcoal to activate persulfate to degrade phenols[J]. China Environmental Science, 2022, 42(5): 2153-2160 (in Chinese).
[36] 雷倩, 许路, 艾伟, 等. CDs-BOC复合催化剂可见光下活化过硫酸盐降解典型PPCPs[J]. 环境科学, 2021, 42(6): 2885-2895. LEI Q, XU L, AI W, et al. CDs-BOC nanophotocatalyst activating persulfate under visible light for the efficient degradation of typical PPCPs[J]. Environmental Science, 2021, 42(6): 2885-2895 (in Chinese).
[37] KHAN A, ZHANG K K, SUN P, et al. High performance of the A-Mn2O3 nanocatalyst for persulfate activation: Degradation process of organic contaminants via singlet oxygen[J]. Journal of Colloid and Interface Science, 2021, 584: 885-899. doi: 10.1016/j.jcis.2020.10.021 [38] LI Y, LI L, CHEN Z X, et al. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms[J]. Chemosphere, 2018, 192: 372-378. doi: 10.1016/j.chemosphere.2017.10.126 [39] MAEZONO T, TOKUMURA M, SEKINE M, et al. Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange Ⅱ[J]. Chemosphere, 2011, 82(10): 1422-1430. doi: 10.1016/j.chemosphere.2010.11.052 [40] ZHOU P, ZHANG J, LIANG J, et al. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple[J]. Water Science and Technology2016, 73(3): 493-500.