-
随着我国城市化和工业化发展进程的加快[1],人们逐渐认识到治理环境污染的重要性,其中大气污染成为诸多专家学者的研究热点[2]. 目前,我国大气污染的主要特征为细颗粒物(PM2.5)和臭氧(O3)复合污染[3],挥发性有机物(VOCs)是细颗粒物和臭氧共同的重要前体物[4 − 5],主要来源于人为源和光化学源,在光照条件下,与空气中氮氧化物(NOx)发生光化学反应[6],生成臭氧(O3)和二次有机气溶胶(SOA),这是灰霾形成的主要原因之一[7]. VOCs种类繁多、成分复杂[8],具有低浓度、强活性、高危害等特点[9],其中一些是已知的致癌物,含有一定的毒性[10],对大气环境和人体健康均会产生危害[11],治理VOCs刻不容缓.
近些年,针对燃烧源、道路移动源、工业过程源、工业溶剂源等重点VOCs排放源的研究取得了突破性进展. Chandra等[12]使用13种VOCs对生物质燃烧源研究进行优化,定量重复性好,总不确定度≤30%,可储存15 d;在不同相对湿度下,每个热解吸管(10—150 ng)的校准具有良好的线性(R2≥0.90). Yang等[13]评估了工业锅炉形成O3、SOA的潜势,芳香烃是燃煤、燃油锅炉共同的主要组分,主要物种为苯、甲苯等苯系物. Wang等[14]对道路机动车尾气VOCs的研究表明,芳香烃和烷烃是最主要的组分,占比为68.1%—98.0%. Saber等[15]研究表明,PAHs是焦化厂的主要化合物,浓度分别为84.4 μg·L−1、30.7 μg·L−1. 李世杰等[16]测定了6类家具板材排放的VOCs浓度,结果表明,TVOCs的8 h平均值在0.1—0.7 mg·m−3不等,主要物种为甲苯、甲醛、正壬烷等. 家具制造业作为典型工业溶剂源[17],包亦姝等[18]对成都市家具制造业的研究表明,芳香烃和OVOCs是主要组分,主要物种为邻二甲苯、间二甲苯等苯系物,占比39.8%. Qi等[19]研究表明,家具涂装车间的主要物种是乙酸乙酯、n-乙酸丁酯、乙酸仲丁酯等含氧VOCs. 在Tong等[20]对珠江三角洲家具业的研究中表明,饱和脂肪酸酯、芳香烃和酮是主要组分,占比为63.31%、45.3%和35.1%,其中乙苯、二氯甲烷和苯是工人致癌风险的主要来源. 齐一谨等[21]研究了郑州市家具制造业的VOCs排放成分,主要为间/对二甲苯、邻二甲苯等C7—C8苯系物. Yuan等[22]研究指出,甲苯、乙苯和二甲苯等苯系物是北京家具企业的主要排放物种. 家具制造业的研究多集中于京津冀、珠江三角洲或其他内陆经济较为发达地区,关于汾渭平原的研究相对较少,VOCs成分源谱相对匮乏. 该研究选择运城市为对象,详细分析其VOCs排放特征及环境影响,以期为当地科学有效地降低该行业对环境空气质量影响提供参考,丰富本地化的源谱研究进展,进而对运城市大气污染治理起到一定的指导作用.
运城市某家具制造厂VOCs排放特征及环境影响分析
Characteristics of VOCs spectrum and environmental impact of a furniture factory in Yuncheng City
-
摘要: 为研究汾渭平原运城市家具制造业VOCs排放特征,选取运城市一家具有代表性的家具制造企业作为研究对象,利用气相色谱-质谱/氢火焰离子化检测器(GC-MS/FID),采用外标法定量分析了挥发性有机物(VOCs)浓度排放特征,并估算了其臭氧生成潜势(OFP)与二次有机气溶胶生成潜势(SOAFP). 研究显示,底漆车间、修色车间、面漆车间、木材加工车间、厂房外、排放烟囱A以及排放烟囱B的TVOCs浓度在1.25—14.56 mg·m−3,烟囱A和B采用水过滤+活性炭吸附工艺对末端烟气进行处理,该工艺对烟囱A各VOCs组分具有较好的处理效果;该家具制造厂排放的主要VOCs组分为芳香烃、OVOCs和烷烃,占比分别为39.0%—68.0%、13.0%—30.0%和10.0%—28.0%,其中,主要物种为乙苯、间/对二甲苯、乙酸乙酯等;对OFP贡献较大的组分为芳香烃,占比为68.70%—93.28%,其次是OVOCs和烷烃,占比在2.82%—17.09%,对OFP贡献较大的前3种物质分别为间/对二甲苯、邻二甲苯、乙苯;SOAFP的绝对贡献者是芳香烃,占比为93.10%—98.73%,对SOAFP贡献较大的前4种物质分别为间/对二甲苯、邻二甲苯、甲苯、癸烷. 因此,运城市该家具制造企业需要加强对芳香烃等活性较高的VOCs组分的监管与控制力度,希望该研究可以为其提供一定的指导意义.
-
关键词:
- VOC源谱特征 /
- 汾渭平原 /
- 家具制造业 /
- 臭氧生成潜势(OFP) /
- 二次有机气溶胶生成潜势(SOAFP).
Abstract: In order to study the VOCs emission characteristics of furniture manufacturing industry in Yuncheng City of Fenwei Plain, a representative furniture manufacturing enterprise in Yuncheng city was selected as the research object, and the emission characteristics of volatile organic compounds (VOCs) were quantitatively analyzed by using gas chromatogenic-mass spectrometry/hydrogen flame ionization detector (GC-MS/FID) and external standard method. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated. According to the study: The concentration of TVOCs, including the primer workshop, color repair workshop, finish paint workshop, wood processing workshop, outside the workshop, discharge chimney A and discharge chimney B was 1.25—14.56 mg·m−3. The end flue gas was treated by water filtration + activated carbon adsorption process in chimney A and B, which had a good treatment each VOCs component of chimney A. The main VOCs emitted by the furniture factory can be divided into aromatic hydrocarbons, OVOCs and alkanes, accounting for 39.0%—68.0%, 13.0%—30.0% and 10.0%—28.0%, respectively, among which, the main species were ethylbenzene, m-paraxylene, ethyl acetate, etc.The group with high contribution to OFP was divided into aromatic hydrocarbons, accounting for 68.70%—93.28%, followed by OVOCs and alkanes, accounting for 2.82% —17.09%. The top three substances with high contribution to OFP were m/p-xylene, o-xylene and ethylbenzene, respectively. The absolute contributors of SOAFP were aromatic hydrocarbons, accounting for 93.10%—98.73%, and the top four substances that contribute more to SOAFP are m-paraxylene, o-xylene, toluene and decane, respectively. Therefore, more attentions should be pay for the furniture manufacturing enterprise to supervision and control of VOCs components, especially for the high activity such as aromatic hydrocarbons. -
表 1 该研究采样点信息表
Table 1. Information table of sampling sites in this study
采样环节
Sampling link采样位置
Sampling location采样方式
Sampling method治理措施
Governance measures样品数量/个
Number of samples底漆车间 距生产线约1 m处 无组织采样 — 2 修色车间 距生产线约1 m处 无组织采样 — 2 面漆车间 距生产线约1 m处 无组织采样 — 2 木材加工车间 距生产线约1 m处 无组织采样 — 1 厂房外 车间门外约1 m处 无组织采样 — 1 排污烟囱A 底漆车间废气排气口 有组织采样 水过滤+活性炭吸附 2 排污烟囱B 修色车间与面漆车间废气排气口 有组织采样 2 表 2 不同文献VOCs排放特征组分对比表
Table 2. Comparison of VOCs Components emission from different documents
地区
Region涂料类型
Coating type主要成分
Main components主要物种
Major species主要排放环节
Main emission links文献来源
Literature source天津市 油性涂料 芳香烃(47.48%—46.37%)、OVOCs(37.72%—
39.86%)3#企业 乙酸正丁酯(27.90%)、乙苯(22.00%)、环己酮(9.31%)、邻二甲苯(9.20%)、环己烷(7.20%)、对二甲苯(6.81%)、间乙基甲苯(6.42%)、甲苯(1.82%) 涂装过程中涂料、稀释剂和固化剂等含有VOCs的原辅料挥发 Liu等[17] 油性涂料 4#企业 乙苯(27.40%)、乙酸乙酯(21.20%)、环己酮(11.20%)、乙酸正丁酯(7.40%)、环己烷(5.80%)、对二甲苯(5.72%)、邻二甲苯(5.37%)、苯乙烯(4.87%) 河北省 溶剂型涂料 芳香烃(14.7%—88.3%)、OVOCs(10.1%—
64.7%)车间 乙酸丁酯(33.7%)、邻二甲苯(15.8%)、对二甲苯(15.3%)、乙酸乙酯(11.4%)、乙苯(9.9%)、甲苯(5.2%)、丙酮(2.4%)、1,2-二氯乙烷(1.6%)、2-丁酮(0.6%)、乙醛(0.5%) 喷涂 王瑞鹏等[34] 溶剂型涂料 排口 乙酸乙酯(51.1%)、环己酮(7.0%)、对二甲苯(6.5%)、1,2-二氯乙烷(5.4%)、三氯甲烷(4.3%)、乙苯(4.0%)、邻二甲苯(3.9%)、乙酸丁酯(3.0%)、甲苯(2.4%)、正辛烷(1.8%) 北京市 水性涂料 OVOCs(55.08%)、芳香烃(18.98%)、烷烃(17.42%) — 乙醇(36.71%)、乙酸乙酯(8.22%)、丙酮(7.77%)、二氯甲烷(9%)、间/对二甲苯(8%)、环己烷(5%)、甲苯(5%)、邻二甲苯(5%)、2-甲基戊烷(4%)、乙苯(4%) 底漆、面漆、色漆 方莉等[35] 广东省 溶剂型涂料 芳香烃(41.91%—
60.67%)、OVOCs(24.75%—
41.29%)排口 苯乙烯(14.68%)、乙酸丁酯(13.07%)、甲缩醛(9.22%)、间/对二甲苯(8.85%)、甲苯(8.61%)、乙苯(7.02%)、二氯甲烷(5.05%)、邻二甲苯(4.65%)、正己烷(4.30%)、乙酸乙酯(3.63%) 喷涂+晾干废气 曾春玲等[36] 水性涂料 芳香烃(15.80%—
23.10%)、OVOCs(54.02%—
62.10%)排口 甲缩醛(14.61%)、二氯甲烷(13.29%)、丙二醇单甲醚乙酸酯(11.81%)、甲苯(9.65%)、乙酸丁酯(9.41%)、乙酸乙酯(7.59%)、异丁烷(5.37%)、乙苯(3.89%)、间/对二甲苯(3.42%)、邻二甲苯(2.49%) 喷涂+烘干废气 溶剂型UV涂料 芳香烃(42.51%—
43.00%)、OVOCs(41.34%—
43.21%)排口 乙酸丁酯(15.36%)、间/对二甲苯(11.85%)、甲苯(11.00%)、异丁烷(8.73%)、邻二甲苯(7.96%)、丙酮(6.86%)、乙苯(6.46%)、二氯甲烷(5.84%)、苯乙烯(5.48%)、甲缩醛(4.70%) 辊涂废气 水性UV涂料 OVOCs(55.23%—64.81%)、芳香烃(14.78%—
16.85%)排口 乙酸丁酯(20.56%)、丙二醇单甲醚乙酸酯(12.98%)、乙酸乙烯酯(12.32%)、正己烷(7.36%)、2-丁酮(5.44%)、1,2,3-三甲苯(5.38%)、反式-1,3-二氯丙烯(4.49%)、苯乙烯(4.43%)、丙酮(4.16%)、1,1-二氯乙烷(3.75%) 辊涂废气 广东省 粉末涂料 OVOCs(42.98%—
46.45%)、芳香烃(24.72%—
26.83%)排口 3-乙氧基丙酸乙酯(20.19%)、乙酸丁酯(15.73%)、1-戊烯(12.38%)、间/对二甲苯(7.89%)、二氯甲烷(6.67%)、甲苯(5.52%)、丙二醇单甲醚乙酸酯(5.39%)、2,2-二甲基己烷(4.55%)、正庚烷(4.53%)、邻二甲苯(4.40%) 喷粉废气 曾春玲等[36] 德州市 未指明 芳香烃(77.0%)、OVOCs(22.0%) — 乙酸丁酯、乳酸乙酯、二甲苯、异丙醇、甲苯、乙苯、丙二醇单甲醚乙酸酯、丙酮、正己烷、苯乙烯、苯 喷漆、热压、烘干等 雒瑞等[37] 运城市 PU型涂料 芳香烃(27.2%—
68.0%)、OVOCs
(13.0%—30.0%)、
烷烃(10.0%—
45.2%)车间 乙苯(24.01%)、间/对二甲苯(19.56%)、乙酸乙酯(16.05%)、邻二甲苯(12.78%)、辛烷(4.67%)、甲苯(3.43%)、乙醇(2.54%)、丁烯酮(2.52%)、丙烷(2.13%)、戊烷(1.81%) 底漆、面漆、修色 该研究 PU型涂料 排口 乙苯(18.10%)、间/对二甲苯(15.73%)、乙酸乙酯(14.65%)、邻二甲苯(11.55%)、辛烷(9.77%)、丁烯酮(7.07%)、乙醇(5.59%)、丙烷(2.83%)、戊烷(2.26%)、异戊烷(1.96%) -
[1] ZHAO M, ZHANG Y, PEI C, et al. Worsening ozone air pollution with reduced NOx and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China[J]. Journal of Environmental Management, 2022, 324: 116327. doi: 10.1016/j.jenvman.2022.116327 [2] KONG L, LUO T Z, JIANG X, et al. Seasonal variation characteristics of VOCs and their influences on secondary pollutants in Yibin, southwest China[J]. Atmosphere, 2022, 13(9): 1389. doi: 10.3390/atmos13091389 [3] CAO J, SITU S P, HAO Y F, et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981-2018 in China[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2351-2364. doi: 10.5194/acp-22-2351-2022 [4] 王迪, 赵文娟, 张玮琦, 等. 溶剂使用源挥发性有机物排放特征与污染控制对策[J]. 环境科学研究, 2019, 32(10): 1687-1695. WANG D, ZHAO W J, ZHANG W Q, et al. Emission profile and control countermeasures of volatile organic compounds in solvent-using source[J]. Research of Environmental Sciences, 2019, 32(10): 1687-1695 (in Chinese).
[5] 修光利, 吴应, 王芳芳, 等. 我国固定源挥发性有机物污染管控的现状与挑战[J]. 环境科学研究, 2020, 33(9): 2048-2060. XIU G L, WU Y, WANG F F, et al. Current status and challenge for control of volatile organic compounds (VOCs) from stationary sources in China[J]. Research of Environmental Sciences, 2020, 33(9): 2048-2060 (in Chinese).
[6] KUMAR V, SINHA V. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J]. Chemosphere, 2021, 283: 131184. doi: 10.1016/j.chemosphere.2021.131184 [7] LIU N W, LI X L, REN W H, et al. Concentration characteristics and photochemical reactivities of VOCs in Shenyang, China[J]. Atmosphere, 2021, 12(10): 1240. doi: 10.3390/atmos12101240 [8] WANG H, HAO R, FANG L, et al. Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J]. Science of the Total Environment, 2021, 752: 141927. doi: 10.1016/j.scitotenv.2020.141927 [9] 刘锐泽, 方渊, 张韬, 等. 青岛市夏季VOCs污染特征及来源解析[J]. 环境工程技术学报, 2021, 11(6): 1041-1048. LIU R Z, FANG Y, ZHANG T, et al. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1041-1048 (in Chinese).
[10] DHITAL N B, YANG H-H, WANG L C, et al. VOCs emission characteristics in motorcycle exhaust with different emission control devices[J]. Atmospheric Pollution Research, 2019, 10(5): 1498-1506. doi: 10.1016/j.apr.2019.04.007 [11] 张利慧, 毋振海, 李斌, 等. 北京市城区春季大气挥发性有机物污染特征[J]. 环境科学研究, 2020, 33(3): 526-535. ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in spring of Beijing urban area[J]. Research of Environmental Sciences, 2020, 33(3): 526-535 (in Chinese).
[12] CHANDRA B P, McCLURE C D, MULLIGAN J, et al. Optimization of a method for the detection of biomass-burning relevant VOCs in urban areas using thermal desorption gas chromatography mass spectrometry[J]. Atmosphere, 2020, 11(3): 276. doi: 10.3390/atmos11030276 [13] YANG H H, GUPTA S K, DHITAL N B, et al. Comparative investigation of coal- and oil-fired boilers based on emission factors, ozone and secondary organic aerosol formation potentials of VOCs[J]. Journal of Environmental Sciences, 2020, 92: 245-255. doi: 10.1016/j.jes.2020.02.024 [14] WANG M, LI S, ZHU R, et al. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles[J]. Atmospheric Environment, 2020, 223: 117294. doi: 10.1016/j.atmosenv.2020.117294 [15] SABER A N, ZHANG H F, CERVANTES-AVILÉS P, et al. Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: Distribution profile, emission characteristics, and health risk assessment[J]. Environmental Pollution, 2020, 265: 114960. doi: 10.1016/j.envpol.2020.114960 [16] 李世杰, 殷宝辉, 赵雪艳, 等. 家具板材排放VOCs成分谱及排放因子研究[J]. 环境科学研究, 2020, 33(4): 859-867. LI S J, YIN B H, ZHAO X Y, et al. Composition and emission factors of VOCs released from wood based panels[J]. Research of Environmental Sciences, 2020, 33(4): 859-867 (in Chinese).
[17] LIU Z Y, CAO Z Q, ZHAO J R, et al. Characteristics of VOCs emission components in typical solvents source industries in Tianjin[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(3): 032010. doi: 10.1088/1755-1315/781/3/032010 [18] 包亦姝, 王斌, 邓也, 等. 成都市典型有机溶剂使用行业VOCs组成成分谱及臭氧生成潜势研究[J]. 环境科学学报, 2020, 40(1): 76-82. BAO Y S, WANG B, DENG Y, et al. Source profiles and ozone formation potential of VOCs emitted from typical industries using organic solvents in Chengdu[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 76-82 (in Chinese).
[19] QI Y, SHEN L, ZHANG J, et al. Species and release characteristics of VOCs in furniture coating process[J]. Environmental Pollution, 2019, 245: 810-819. doi: 10.1016/j.envpol.2018.11.057 [20] TONG R, ZHANG L, YANG X, et al. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing[J]. Journal of Cleaner Production, 2019, 208: 1096-1108. doi: 10.1016/j.jclepro.2018.10.195 [21] 齐一谨, 倪经纬, 赵东旭, 等. 郑州市典型工业企业VOCs排放特征及风险评估[J]. 环境科学, 2020, 41(7): 3056-3065. QI Y J, NI J W, ZHAO D X, et al. Emission characteristics and risk assessment of volatile organic compounds from typical factories in Zhengzhou[J]. Environmental Science, 2020, 41(7): 3056-3065 (in Chinese).
[22] YUAN B, SHAO M, LU S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1919-1926. doi: 10.1016/j.atmosenv.2010.02.014 [23] MO Z, SHAO M, LU S, et al. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China[J]. Science of the Total Environment, 2017, 593/594: 641-653. doi: 10.1016/j.scitotenv.2017.03.123 [24] CARTER W P L. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [25] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899. [26] 邱婉怡, 刘禹含, 谭照峰, 等. 基于中国四大城市群计算的最大增量反应活性[J]. 科学通报, 2020, 65(7): 610-621. doi: 10.1360/TB-2019-0598 QIU W Y, LIU Y H, TAN Z F, et al. Calculation of maximum incremental reactivity scales based on typical megacities in China[J]. Chinese Science Bulletin, 2020, 65(7): 610-621 (in Chinese). doi: 10.1360/TB-2019-0598
[27] GHADIMI S, ZHU H W, DURBIN T D, et al. The impact of hydrogenated vegetable oil (HVO) on the formation of secondary organic aerosol (SOA) from in-use heavy-duty diesel vehicles[J]. Science of the Total Environment, 2022, 822: 153583. doi: 10.1016/j.scitotenv.2022.153583 [28] LIU R, CHEN J, LI G, et al. Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique[J]. Journal of Environmental Management, 2019, 249: 107755. doi: 10.1016/j.jenvman.2018.07.034 [29] LI J, DENG S, LI G, et al. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China[J]. Environmental Research, 2022, 203: 111821. doi: 10.1016/j.envres.2021.111821 [30] SUN J, WU F, HU B, et al. VOC characteristics, emissions and contributions to SOA formation during hazy episodes[J]. Atmospheric Environment, 2016, 141: 560-570. doi: 10.1016/j.atmosenv.2016.06.060 [31] GROSJEAN E, GROSJEAN D. The reaction of unsaturated aliphatic oxygenates with ozone[J]. Journal of Atmospheric Chemistry, 1999, 32(2): 205-232. doi: 10.1023/A:1006122000643 [32] 吕子峰, 郝吉明, 段菁春, 等. 北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学, 2009, 30(4): 969-975. LÜ Z F, HAO J M, DUAN J C, et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime[J]. Environmental Science, 2009, 30(4): 969-975 (in Chinese).
[33] DECHAPANYA W, RUSSELL M, ALLEN D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program[J]. Aerosol Science and Technology, 2004, 38(sup1): 156-166. doi: 10.1080/02786820390229462 [34] 王瑞鹏, 王晓琦, 程水源, 等. 末端治理对工业涂装行业VOCs排放的影响[J]. 中国环境科学, 2022, 42(2): 593-600. WANG R P, WANG X Q, CHENG S Y, et al. Influence of end-of-pipe treatment on VOCs emission in industrial coating industries[J]. China Environmental Science, 2022, 42(2): 593-600 (in Chinese).
[35] 方莉, 刘文文, 陈丹妮, 等. 北京市典型溶剂使用行业VOCs成分谱[J]. 环境科学, 2019, 40(10): 4395-4403. FANG L, LIU W W, CHEN D N, et al. Source profiles of volatile organic compounds(VOCs) from typical solvent-based industries in Beijing[J]. Environmental Science, 2019, 40(10): 4395-4403 (in Chinese).
[36] 曾春玲, 邵霞, 刘锐源, 等. 广东省家具行业基于涂料类型的VOCs排放特征及其环境影响[J]. 环境科学, 2021, 42(10): 4641-4649. ZENG C L, SHAO X, LIU R Y, et al. Coating-derived VOCs emission characteristics and environmental impacts from the furniture industry in Guangdong Province[J]. Environmental Science, 2021, 42(10): 4641-4649 (in Chinese).
[37] 雒瑞, 张巍, 张培勇, 等. 德州市典型溶剂使用行业VOCs排放特征及末端治理技术研究[J]. 涂料工业, 2020, 50(9): 67-75. LUO R, ZHANG W, ZHANG P Y, et al. Study on emission characteristics and end-control measurements for VOCs from typical solvent-usage industries in Dezhou city[J]. Paint & Coatings Industry, 2020, 50(9): 67-75 (in Chinese).
[38] 秦华, 谢建辉, 杜天君, 等. 济南市典型家具企业VOCs排放特征及O3生成贡献分析[J]. 环境保护科学, 2021, 47(3): 138-145. QIN H, XIE J H, DU T J, et al. Analysis on VOCs emission characteristics and ozone generation contribution of typical furniture enterprises in Jinan[J]. Environmental Protection Science, 2021, 47(3): 138-145 (in Chinese).
[39] 张嘉妮, 曾春玲, 刘锐源, 等. 家具企业挥发性有机物排放特征及其环境影响[J]. 环境科学, 2019, 40(12): 5240-5249. ZHANG J N, ZENG C L, LIU R Y, et al. Volatile organic compound emission characteristics of furniture manufacturing enterprises and the influence on the atmospheric environment[J]. Environmental Science, 2019, 40(12): 5240-5249 (in Chinese).