[1] ZHAO M, ZHANG Y, PEI C, et al. Worsening ozone air pollution with reduced NOx and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China[J]. Journal of Environmental Management, 2022, 324: 116327. doi: 10.1016/j.jenvman.2022.116327
[2] KONG L, LUO T Z, JIANG X, et al. Seasonal variation characteristics of VOCs and their influences on secondary pollutants in Yibin, southwest China[J]. Atmosphere, 2022, 13(9): 1389. doi: 10.3390/atmos13091389
[3] CAO J, SITU S P, HAO Y F, et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981-2018 in China[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2351-2364. doi: 10.5194/acp-22-2351-2022
[4] 王迪, 赵文娟, 张玮琦, 等. 溶剂使用源挥发性有机物排放特征与污染控制对策[J]. 环境科学研究, 2019, 32(10): 1687-1695. WANG D, ZHAO W J, ZHANG W Q, et al. Emission profile and control countermeasures of volatile organic compounds in solvent-using source[J]. Research of Environmental Sciences, 2019, 32(10): 1687-1695 (in Chinese).
[5] 修光利, 吴应, 王芳芳, 等. 我国固定源挥发性有机物污染管控的现状与挑战[J]. 环境科学研究, 2020, 33(9): 2048-2060. XIU G L, WU Y, WANG F F, et al. Current status and challenge for control of volatile organic compounds (VOCs) from stationary sources in China[J]. Research of Environmental Sciences, 2020, 33(9): 2048-2060 (in Chinese).
[6] KUMAR V, SINHA V. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J]. Chemosphere, 2021, 283: 131184. doi: 10.1016/j.chemosphere.2021.131184
[7] LIU N W, LI X L, REN W H, et al. Concentration characteristics and photochemical reactivities of VOCs in Shenyang, China[J]. Atmosphere, 2021, 12(10): 1240. doi: 10.3390/atmos12101240
[8] WANG H, HAO R, FANG L, et al. Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J]. Science of the Total Environment, 2021, 752: 141927. doi: 10.1016/j.scitotenv.2020.141927
[9] 刘锐泽, 方渊, 张韬, 等. 青岛市夏季VOCs污染特征及来源解析[J]. 环境工程技术学报, 2021, 11(6): 1041-1048. LIU R Z, FANG Y, ZHANG T, et al. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1041-1048 (in Chinese).
[10] DHITAL N B, YANG H-H, WANG L C, et al. VOCs emission characteristics in motorcycle exhaust with different emission control devices[J]. Atmospheric Pollution Research, 2019, 10(5): 1498-1506. doi: 10.1016/j.apr.2019.04.007
[11] 张利慧, 毋振海, 李斌, 等. 北京市城区春季大气挥发性有机物污染特征[J]. 环境科学研究, 2020, 33(3): 526-535. ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in spring of Beijing urban area[J]. Research of Environmental Sciences, 2020, 33(3): 526-535 (in Chinese).
[12] CHANDRA B P, McCLURE C D, MULLIGAN J, et al. Optimization of a method for the detection of biomass-burning relevant VOCs in urban areas using thermal desorption gas chromatography mass spectrometry[J]. Atmosphere, 2020, 11(3): 276. doi: 10.3390/atmos11030276
[13] YANG H H, GUPTA S K, DHITAL N B, et al. Comparative investigation of coal- and oil-fired boilers based on emission factors, ozone and secondary organic aerosol formation potentials of VOCs[J]. Journal of Environmental Sciences, 2020, 92: 245-255. doi: 10.1016/j.jes.2020.02.024
[14] WANG M, LI S, ZHU R, et al. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles[J]. Atmospheric Environment, 2020, 223: 117294. doi: 10.1016/j.atmosenv.2020.117294
[15] SABER A N, ZHANG H F, CERVANTES-AVILÉS P, et al. Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: Distribution profile, emission characteristics, and health risk assessment[J]. Environmental Pollution, 2020, 265: 114960. doi: 10.1016/j.envpol.2020.114960
[16] 李世杰, 殷宝辉, 赵雪艳, 等. 家具板材排放VOCs成分谱及排放因子研究[J]. 环境科学研究, 2020, 33(4): 859-867. LI S J, YIN B H, ZHAO X Y, et al. Composition and emission factors of VOCs released from wood based panels[J]. Research of Environmental Sciences, 2020, 33(4): 859-867 (in Chinese).
[17] LIU Z Y, CAO Z Q, ZHAO J R, et al. Characteristics of VOCs emission components in typical solvents source industries in Tianjin[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(3): 032010. doi: 10.1088/1755-1315/781/3/032010
[18] 包亦姝, 王斌, 邓也, 等. 成都市典型有机溶剂使用行业VOCs组成成分谱及臭氧生成潜势研究[J]. 环境科学学报, 2020, 40(1): 76-82. BAO Y S, WANG B, DENG Y, et al. Source profiles and ozone formation potential of VOCs emitted from typical industries using organic solvents in Chengdu[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 76-82 (in Chinese).
[19] QI Y, SHEN L, ZHANG J, et al. Species and release characteristics of VOCs in furniture coating process[J]. Environmental Pollution, 2019, 245: 810-819. doi: 10.1016/j.envpol.2018.11.057
[20] TONG R, ZHANG L, YANG X, et al. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing[J]. Journal of Cleaner Production, 2019, 208: 1096-1108. doi: 10.1016/j.jclepro.2018.10.195
[21] 齐一谨, 倪经纬, 赵东旭, 等. 郑州市典型工业企业VOCs排放特征及风险评估[J]. 环境科学, 2020, 41(7): 3056-3065. QI Y J, NI J W, ZHAO D X, et al. Emission characteristics and risk assessment of volatile organic compounds from typical factories in Zhengzhou[J]. Environmental Science, 2020, 41(7): 3056-3065 (in Chinese).
[22] YUAN B, SHAO M, LU S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1919-1926. doi: 10.1016/j.atmosenv.2010.02.014
[23] MO Z, SHAO M, LU S, et al. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China[J]. Science of the Total Environment, 2017, 593/594: 641-653. doi: 10.1016/j.scitotenv.2017.03.123
[24] CARTER W P L. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026
[25] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899.
[26] 邱婉怡, 刘禹含, 谭照峰, 等. 基于中国四大城市群计算的最大增量反应活性[J]. 科学通报, 2020, 65(7): 610-621. doi: 10.1360/TB-2019-0598 QIU W Y, LIU Y H, TAN Z F, et al. Calculation of maximum incremental reactivity scales based on typical megacities in China[J]. Chinese Science Bulletin, 2020, 65(7): 610-621 (in Chinese). doi: 10.1360/TB-2019-0598
[27] GHADIMI S, ZHU H W, DURBIN T D, et al. The impact of hydrogenated vegetable oil (HVO) on the formation of secondary organic aerosol (SOA) from in-use heavy-duty diesel vehicles[J]. Science of the Total Environment, 2022, 822: 153583. doi: 10.1016/j.scitotenv.2022.153583
[28] LIU R, CHEN J, LI G, et al. Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique[J]. Journal of Environmental Management, 2019, 249: 107755. doi: 10.1016/j.jenvman.2018.07.034
[29] LI J, DENG S, LI G, et al. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China[J]. Environmental Research, 2022, 203: 111821. doi: 10.1016/j.envres.2021.111821
[30] SUN J, WU F, HU B, et al. VOC characteristics, emissions and contributions to SOA formation during hazy episodes[J]. Atmospheric Environment, 2016, 141: 560-570. doi: 10.1016/j.atmosenv.2016.06.060
[31] GROSJEAN E, GROSJEAN D. The reaction of unsaturated aliphatic oxygenates with ozone[J]. Journal of Atmospheric Chemistry, 1999, 32(2): 205-232. doi: 10.1023/A:1006122000643
[32] 吕子峰, 郝吉明, 段菁春, 等. 北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学, 2009, 30(4): 969-975. LÜ Z F, HAO J M, DUAN J C, et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime[J]. Environmental Science, 2009, 30(4): 969-975 (in Chinese).
[33] DECHAPANYA W, RUSSELL M, ALLEN D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program[J]. Aerosol Science and Technology, 2004, 38(sup1): 156-166. doi: 10.1080/02786820390229462
[34] 王瑞鹏, 王晓琦, 程水源, 等. 末端治理对工业涂装行业VOCs排放的影响[J]. 中国环境科学, 2022, 42(2): 593-600. WANG R P, WANG X Q, CHENG S Y, et al. Influence of end-of-pipe treatment on VOCs emission in industrial coating industries[J]. China Environmental Science, 2022, 42(2): 593-600 (in Chinese).
[35] 方莉, 刘文文, 陈丹妮, 等. 北京市典型溶剂使用行业VOCs成分谱[J]. 环境科学, 2019, 40(10): 4395-4403. FANG L, LIU W W, CHEN D N, et al. Source profiles of volatile organic compounds(VOCs) from typical solvent-based industries in Beijing[J]. Environmental Science, 2019, 40(10): 4395-4403 (in Chinese).
[36] 曾春玲, 邵霞, 刘锐源, 等. 广东省家具行业基于涂料类型的VOCs排放特征及其环境影响[J]. 环境科学, 2021, 42(10): 4641-4649. ZENG C L, SHAO X, LIU R Y, et al. Coating-derived VOCs emission characteristics and environmental impacts from the furniture industry in Guangdong Province[J]. Environmental Science, 2021, 42(10): 4641-4649 (in Chinese).
[37] 雒瑞, 张巍, 张培勇, 等. 德州市典型溶剂使用行业VOCs排放特征及末端治理技术研究[J]. 涂料工业, 2020, 50(9): 67-75. LUO R, ZHANG W, ZHANG P Y, et al. Study on emission characteristics and end-control measurements for VOCs from typical solvent-usage industries in Dezhou city[J]. Paint & Coatings Industry, 2020, 50(9): 67-75 (in Chinese).
[38] 秦华, 谢建辉, 杜天君, 等. 济南市典型家具企业VOCs排放特征及O3生成贡献分析[J]. 环境保护科学, 2021, 47(3): 138-145. QIN H, XIE J H, DU T J, et al. Analysis on VOCs emission characteristics and ozone generation contribution of typical furniture enterprises in Jinan[J]. Environmental Protection Science, 2021, 47(3): 138-145 (in Chinese).
[39] 张嘉妮, 曾春玲, 刘锐源, 等. 家具企业挥发性有机物排放特征及其环境影响[J]. 环境科学, 2019, 40(12): 5240-5249. ZHANG J N, ZENG C L, LIU R Y, et al. Volatile organic compound emission characteristics of furniture manufacturing enterprises and the influence on the atmospheric environment[J]. Environmental Science, 2019, 40(12): 5240-5249 (in Chinese).