[1] LIU Y, ZHANG X M, WANG J L. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism[J]. Chemosphere, 2022, 291(Pt 1): 132728.
[2] 袁世红, 宋新山, 曹新, 等. 几种可作固相碳源的硝酸根吸附剂的制备及其性能[J]. 环境化学, 2019, 38(3): 589-598. doi: 10.7524/j.issn.0254-6108.2018042707 YUAN S H, SONG X S, CAO X, et al. Preparation and characterization of nitrate adsorbents with slow-releasing carbon capacity[J]. Environmental Chemistry, 2019, 38(3): 589-598 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018042707
[3] ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source-based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669
[4] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001
[5] YANG Z C, YANG L H, WEI C J, et al. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration[J]. Bioresource Technology, 2018, 248: 98-103. doi: 10.1016/j.biortech.2017.07.188
[6] JIANG L, WU A Q, FANG D X, et al. Denitrification performance and microbial diversity using starch-polycaprolactone blends as external solid carbon source and biofilm carriers for advanced treatment[J]. Chemosphere, 2020, 255: 126901. doi: 10.1016/j.chemosphere.2020.126901
[7] FU X R, HOU R R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. doi: 10.1016/j.scitotenv.2022.153061
[8] 徐玉金, 汤映莹, 高依林, 等. 新型LDHs基缓释碳源的制备及应用[J]. 环境化学, 2022, 41(12): 3840-3854. doi: 10.7524/j.issn.0254-6108.2021080908 XU Y J, TANG Y Y, GAO Y L, et al. Preparation and application of a novel LDHs-based slow-release carbon source[J]. Environmental Chemistry, 2022, 41(12): 3840-3854 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021080908
[9] SUN H M, YANG Z C, WEI C J, et al. Nitrogen removal performance and functional genes distribution patterns in solid-phase denitrification sub-surface constructed wetland with micro aeration[J]. Bioresource Technology, 2018, 263: 223-231. doi: 10.1016/j.biortech.2018.04.078
[10] SUN H M, ZHOU Q, ZHAO L, et al. Enhanced simultaneous removal of nitrate and phosphate using novel solid carbon source/zero-valent iron composite[J]. Journal of Cleaner Production, 2021, 289: 125757. doi: 10.1016/j.jclepro.2020.125757
[11] YANG Z C, SUN H M, ZHOU Q, et al. Nitrogen removal performance in pilot-scale solid-phase denitrification systems using novel biodegradable blends for treatment of waste water treatment plants effluent[J]. Bioresource Technology, 2020, 305: 122994. doi: 10.1016/j.biortech.2020.122994
[12] SUN H M, YANG Z C, YANG F F, et al. Enhanced simultaneous nitrification and denitrification performance in a fixed-bed system packed with PHBV/PLA blends[J]. International Biodeterioration & Biodegradation, 2020, 146: 104810.
[13] WANG H S, CHEN N, FENG C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521. doi: 10.1016/j.scitotenv.2021.146521
[14] WU W Z, YANG F F, YANG L H. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier[J]. Bioresource Technology, 2012, 118: 136-140. doi: 10.1016/j.biortech.2012.04.066
[15] 杨飞飞, 吴为中. 以PHBV为碳源和生物膜载体的生物反硝化研究[J]. 中国环境科学, 2014, 34(7): 1703-1708. YANG F F, WU W Z. Biological denitrification using PHBV as carbon source and biofilm carrier[J]. China Environmental Science, 2014, 34(7): 1703-1708 (in Chinese).
[16] ZHANG S S, SUN X B, FAN Y T, et al. Heterotrophic nitrification and aerobic denitrification by Diaphorobacter polyhydroxybutyrativorans SL-205 using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as the sole carbon source[J]. Bioresource Technology, 2017, 241: 500-507. doi: 10.1016/j.biortech.2017.05.185
[17] LI P, ZUO J E, WANG Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83. doi: 10.1016/j.watres.2016.02.009
[18] YANG L, GUO L K, REN Y X, et al. Denitrification performance, biofilm formation and microbial diversity during startup of slow sand filter using powdery polycaprolactone as solid carbon source[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105561. doi: 10.1016/j.jece.2021.105561
[19] ZHU S M, DENG Y L, RUAN Y J, et al. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment[J]. Bioresource Technology, 2015, 192: 603-610. doi: 10.1016/j.biortech.2015.06.021
[20] 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8): 2315-2319. FAN Z X, WANG J L. Denitrification using polylactic acid as solid carbon source[J]. Environmental Science, 2009, 30(8): 2315-2319 (in Chinese).
[21] BOLEY A, MÜLLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering, 2000, 22(1/2): 75-85.
[22] LIU D Z, LI J W, LI C W, et al. Poly(butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system[J]. Scientific Reports, 2018, 8: 3289. doi: 10.1038/s41598-018-21702-5
[23] LUO G Z, HOU Z W, TIAN L Q, et al. Comparison of nitrate-removal efficiency and bacterial properties using PCL and PHBV polymers as a carbon source to treat aquaculture water[J]. Aquaculture and Fisheries, 2020, 5(2): 92-98. doi: 10.1016/j.aaf.2019.04.002
[24] LUO G Z, XU G M, GAO J F, et al. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors[J]. Journal of Environmental Sciences, 2016, 43: 147-152. doi: 10.1016/j.jes.2015.10.022
[25] CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9): 1310-1316. doi: 10.1016/j.chemosphere.2013.02.064
[26] XU Z S, DAI X H, CHAI X L. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier[J]. Biochemical Engineering Journal, 2019, 146: 186-193. doi: 10.1016/j.bej.2019.03.019
[27] 朱擎, 杨飞飞, 赵兰, 等. 两种共混BDPs作为生物膜载体和碳源的脱氮研究比较[J]. 北京大学学报(自然科学版), 2015, 51(3): 525-530. ZHU Q, YANG F F, ZHAO L, et al. Comparison of two biodegradable polymer blends as biofilm carrier and carbon source for nitrogen removal[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(3): 525-530 (in Chinese).
[28] RUAN Y J, DENG Y L, GUO X S, et al. Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier[J]. Bioresource Technology, 2016, 216: 1004-1013. doi: 10.1016/j.biortech.2016.06.056
[29] QI W H, TAHERZADEH M J, RUAN Y J, et al. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite[J]. Bioresource Technology, 2020, 305: 123033. doi: 10.1016/j.biortech.2020.123033
[30] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348
[31] ZHOU Q, SUN H M, JIA L X, et al. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species[J]. Bioresource Technology, 2022, 347: 126724. doi: 10.1016/j.biortech.2022.126724
[32] 吴为中, 赵柳, 周琦, 等. 基于黄铁矿与PHBV协同自养-异养反硝化试验研究[J]. 应用基础与工程科学学报, 2022, 30(2): 282-294. WU W Z, ZHAO L, ZHOU Q, et al. Laboratory-scale study on combined autotrophic-heterotrophic denitrification based on pyrite and PHBV[J]. Journal of Basic Science and Engineering, 2022, 30(2): 282-294 (in Chinese).
[33] YI C H, QIN W, WEN X H. Renovated filter filled with poly-3-hydroxybutyrateco-hydroxyvalerate and granular activated carbon for simultaneous removal of nitrate and PPCPs from the secondary effluent[J]. Science of the Total Environment, 2020, 749: 141494. doi: 10.1016/j.scitotenv.2020.141494
[34] XU Z S, SONG L Y, DAI X H, et al. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria[J]. Chemosphere, 2018, 197: 96-104. doi: 10.1016/j.chemosphere.2018.01.023
[35] 易成豪, 秦伟, 陈湛, 等. 聚己内酯与聚羟基丁酸戊酸酯的脱氮性能对比[J]. 环境科学, 2019, 40(9): 4143-4151. YI C H, QIN W, CHEN Z, et al. Comparison of polycaprolactone and poly-3-hydroxybutyrate-co-3-hydroxyvalerate for nitrogen removal[J]. Environmental Science, 2019, 40(9): 4143-4151 (in Chinese).
[36] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425. doi: 10.1016/j.biortech.2018.07.029
[37] SHAHABI Z A, NAEIMPOOR F. Enhanced heterotrophic denitrification: Effect of dairy industry sludge acclimatization and operating conditions[J]. Applied Biochemistry and Biotechnology, 2014, 173(3): 741-752. doi: 10.1007/s12010-014-0884-4
[38] ZHONG H, CHENG Y, AHMAD Z, et al. Solid-phase denitrification for water remediation: Processes, limitations, and new aspects[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1113-1130. doi: 10.1080/07388551.2020.1805720
[39] YANG Z C, ZHOU Q, SUN H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study[J]. Water Research, 2021, 196: 117067. doi: 10.1016/j.watres.2021.117067
[40] 李加伟. 基于可生物降解聚合物的循环水养殖废水生物脱氮技术研究[D]. 杭州: 浙江大学, 2019. LI J W. Study on biological nitrogen removal by using BDPs for RAS wastewater treatment[D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
[41] LUO G Z, XU G M, TAN H X, et al. Effect of dissolved oxygen on denitrification using polycaprolactone as both the organic carbon source and the biofilm carrier[J]. International Biodeterioration & Biodegradation, 2016, 110: 155-162.
[42] LUO F Z, ZHANG J S, WEI Q, et al. Insights into the relationship between denitrification and organic carbon release of solid-phase denitrification systems: Mechanism and microbial characteristics[J]. Bioresource Technology, 2022, 364: 128044. doi: 10.1016/j.biortech.2022.128044
[43] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198
[44] CHU L B, WANG J L. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity[J]. Chemosphere, 2016, 155: 463-470. doi: 10.1016/j.chemosphere.2016.04.090
[45] TAKAHASHI M, YAMADA T, TANNO M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate[J]. Microbes and Environments, 2011, 26(3): 212-219. doi: 10.1264/jsme2.ME11107
[46] HANG Q Y, WANG H Y, CHU Z S, et al. Application of plant carbon source for denitrification by constructed wetland and bioreactor: Review of recent development[J]. Environmental Science and Pollution Research, 2016, 23(9): 8260-8274. doi: 10.1007/s11356-016-6324-y
[47] HIRAISHI A, KHAN S T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment[J]. Applied Microbiology and Biotechnology, 2003, 61(2): 103-109. doi: 10.1007/s00253-002-1198-y
[48] ZHANG Q, JI F Y, XU X Y. Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification[J]. Chemical Engineering Journal, 2016, 283: 604-613. doi: 10.1016/j.cej.2015.07.085
[49] XIA L, LI X M, FAN W H, et al. Denitrification performance and microbial community of bioreactor packed with PHBV/PLA/rice hulls composite[J]. Science of the Total Environment, 2022, 803: 150033. doi: 10.1016/j.scitotenv.2021.150033
[50] CHU L B, WANG J L. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio[J]. Chemosphere, 2011, 83(1): 63-68. doi: 10.1016/j.chemosphere.2010.12.077
[51] HE Q L, WANG H Y, CHEN L, et al. Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures[J]. Journal of Hazardous Materials, 2020, 384: 121454. doi: 10.1016/j.jhazmat.2019.121454
[52] FENG L, PI S, ZHU W, et al. Nitrification and aerobic denitrification in solid phase denitrification systems with various biodegradable carriers for ammonium-contaminated water purification[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(11): 3569-3577.
[53] van RIJN J, TAL Y, SCHREIER H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364-376. doi: 10.1016/j.aquaeng.2005.04.004
[54] GUTIERREZ-WING M T, MALONE R F, RUSCH K A. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification[J]. Aquacultural Engineering, 2012, 51: 36-43. doi: 10.1016/j.aquaeng.2012.07.002
[55] LUO G Z, LI L, LIU Q, et al. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier[J]. Bioresource Technology, 2014, 171: 152-158. doi: 10.1016/j.biortech.2014.08.055
[56] HAO Z L, ALI A, REN Y, et al. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment[J]. Science of the Total Environment, 2022, 847: 157452. doi: 10.1016/j.scitotenv.2022.157452
[57] ZHANG Q, JI F Y, XU X Y. Optimization of nitrate removal from wastewater with a low C/N ratio using solid-phase denitrification[J]. Environmental Science and Pollution Research, 2016, 23(1): 698-708. doi: 10.1007/s11356-015-5308-7
[58] JIANG L, ZHANG Y F, SHEN Q S, et al. The metabolic patterns of the complete nitrates removal in the biofilm denitrification systems supported by polymer and water-soluble carbon sources as the electron donors[J]. Bioresource Technology, 2021, 342: 126002. doi: 10.1016/j.biortech.2021.126002
[59] 罗国芝, 侯志伟, 高锦芳, 等. 不同水力停留时间条件下PCL为碳源去除水产养殖水体硝酸盐的效率及微生物群落分析[J]. 环境工程学报, 2018, 12(2): 572-580. LUO G Z, HOU Z W, GAO J F, et al. Nitrate removal efficiency and microbial community analysis of polycaprolactone-packed bioreactors with PCL as carbon source treating aquaculture water under different hydraulic retention time[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 572-580 (in Chinese).
[60] XU Z S, DAI X H, CHAI X L. Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor[J]. Biochemical Engineering Journal, 2018, 131: 24-30. doi: 10.1016/j.bej.2017.12.008
[61] ZHU S M, ZHANG L P, YE Z Y, et al. Denitrification performance and bacterial ecological network of a reactor using biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as an electron donor for nitrate removal from aquaculture wastewater[J]. Science of the Total Environment, 2023, 857: 159637. doi: 10.1016/j.scitotenv.2022.159637
[62] FANG D X, WU A Q, HUANG L P, et al. Polymer substrate reshapes the microbial assemblage and metabolic patterns within a biofilm denitrification system[J]. Chemical Engineering Journal, 2020, 387: 124128. doi: 10.1016/j.cej.2020.124128
[63] HAN F, LI X, ZHANG M R, et al. Solid-phase denitrification in high salinity and low-temperature wastewater treatment[J]. Bioresource Technology, 2021, 341: 125801. doi: 10.1016/j.biortech.2021.125801
[64] MIAO Y, LIAO R H, ZHANG X X, et al. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Water Research, 2015, 76: 43-52. doi: 10.1016/j.watres.2015.02.042
[65] SHEN Q S, JI F Y, WEI J Z, et al. The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis[J]. Science of the Total Environment, 2020, 732: 139333. doi: 10.1016/j.scitotenv.2020.139333
[66] JIA L X, SUN H M, ZHOU Q, et al. Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in Southern China: Enhanced nitrogen removal and mechanism[J]. Journal of Environmental Management, 2021, 292: 112750. doi: 10.1016/j.jenvman.2021.112750
[67] 杨惠兰, 张丹, 兰书焕, 等. 聚己内酯复合固体碳源的制备及其深度脱氮性能研究[J]. 环境科学学报, 2022, 42(5): 263-273. YANG H L, ZHANG D, LAN S H, et al. Preparation of polycaprolactone composite solid carbon source and its tertiary nitrogen removal[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 263-273 (in Chinese).
[68] WANG X J, WANG W Q, ZHANG Y, et al. Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source[J]. Bioresource Technology, 2019, 288: 121506. doi: 10.1016/j.biortech.2019.121506
[69] WU B R, ZHOU M, SONG L Y, et al. Mechanism insights into polyhydroxyalkanoate-regulated denitrification from the perspective of pericytoplasmic nitrate reductase expression[J]. Science of the Total Environment, 2021, 754: 142083. doi: 10.1016/j.scitotenv.2020.142083
[70] LI C Y, WANG H Y, YAN G K, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. Journal of Environmental Sciences, 2022, 118: 32-45. doi: 10.1016/j.jes.2021.08.045